Progress in Materials Science最新文献

筛选
英文 中文
Unveiling cutting-edge advances in high surface area porous materials for the efficient removal of toxic metal ions from water 揭示高效去除水中有毒金属离子的高比表面积多孔材料的前沿进展
IF 37.4 1区 材料科学
Progress in Materials Science Pub Date : 2024-06-03 DOI: 10.1016/j.pmatsci.2024.101314
Padmaja V. Mane , Richelle M. Rego , Pei Lay Yap , Dusan Losic , Mahaveer D. Kurkuri
{"title":"Unveiling cutting-edge advances in high surface area porous materials for the efficient removal of toxic metal ions from water","authors":"Padmaja V. Mane ,&nbsp;Richelle M. Rego ,&nbsp;Pei Lay Yap ,&nbsp;Dusan Losic ,&nbsp;Mahaveer D. Kurkuri","doi":"10.1016/j.pmatsci.2024.101314","DOIUrl":"10.1016/j.pmatsci.2024.101314","url":null,"abstract":"<div><p>This review offers a comprehensive evaluation of an emerging category of adsorbing materials known as high surface area materials (HSAMs) in the realm of water remediation. The objective is to shed light on recent advancements in HSAMs featuring multiple dimensionalities, addressing their efficacy in adsorbing toxic metal ions from wastewater. The spectrum of HSAMs examined in this review encompasses metal–organic frameworks (MOFs), covalent organic frameworks (COFs), carbon-based porous materials, mesoporous silica, polymer-based porous materials, layered double hydroxides, and aerogels. This review delves into the state-of-the-art design and synthetic approaches for these materials, elucidating their inherent properties. It particularly emphasizes how the combination of high surface area and pore structure contributes to their effectiveness in adsorbing toxic metal ions. These materials possess remarkable attributes, including molecular functionalization versatility, high porosity, expansive surface area, distinctive physicochemical characteristics, and well-defined crystal structures, rendering them exceptional adsorbents. While each of these materials boasts unique advantages stemming from their remarkable properties, their synthesis often entails intricate and costly procedures, presenting a substantial obstacle to their commercialization and widespread adoption. Finally, the review underscores the existing challenges that must be addressed to expedite their translation for water remediation applications of these promising materials.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"146 ","pages":"Article 101314"},"PeriodicalIF":37.4,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524000835/pdfft?md5=7495ac851cbb616c208e0042fe660466&pid=1-s2.0-S0079642524000835-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141278183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Steels for rails 钢轨用钢
IF 37.4 1区 材料科学
Progress in Materials Science Pub Date : 2024-05-31 DOI: 10.1016/j.pmatsci.2024.101313
W. Solano-Alvarez , H.K.D.H. Bhadeshia
{"title":"Steels for rails","authors":"W. Solano-Alvarez ,&nbsp;H.K.D.H. Bhadeshia","doi":"10.1016/j.pmatsci.2024.101313","DOIUrl":"https://doi.org/10.1016/j.pmatsci.2024.101313","url":null,"abstract":"<div><p>Transport by rail is an efficient way of moving goods and people while managing problems such as congestion and the consequences on the environment. The relatively low energy consumption and CO<sub>2</sub> emissions are attributed to the low rolling-resistance due to the stiffness of the wheel and rail, leading to small contact area <span>[1]</span>. Investments in rail transportation has boomed in recent years. London, with the oldest underground rail system in the world, has added the Elisabeth Line at a cost of some £14 billion; China now has the largest high-speed rail system in the world. All these developments rely on the safe performance of steel rails, which suffer from two primary damage mechanisms, rolling-contact fatigue caused essentially by repeated contact stresses with the wheel, and a variety of wear mechanisms. Factors such as weldability are important, given that all modern rails are continuous. This review deals with the detailed physical-metallurgy of rail steels, including alloy design, microstructure, variety and choice, and damage mechanisms.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"146 ","pages":"Article 101313"},"PeriodicalIF":37.4,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524000823/pdfft?md5=4770904fcfcb7621826a133e54d248c7&pid=1-s2.0-S0079642524000823-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141314981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aluminium alloys and composites for electrochemical energy systems 用于电化学能源系统的铝合金和复合材料
IF 37.4 1区 材料科学
Progress in Materials Science Pub Date : 2024-05-31 DOI: 10.1016/j.pmatsci.2024.101322
Muhammad Manikkoth , Sreekala Kunhi Kannan , J. Mary Gladis , T.P.D. Rajan
{"title":"Aluminium alloys and composites for electrochemical energy systems","authors":"Muhammad Manikkoth ,&nbsp;Sreekala Kunhi Kannan ,&nbsp;J. Mary Gladis ,&nbsp;T.P.D. Rajan","doi":"10.1016/j.pmatsci.2024.101322","DOIUrl":"https://doi.org/10.1016/j.pmatsci.2024.101322","url":null,"abstract":"<div><p>Affordable and clean energy stands as a key component within the realm of sustainable development. As an integral stride toward sustainability, substantial endeavors have been dedicated to advancing electrochemical energy technologies aiming to improve energy efficiency. Al is the third most element in the earth’s crust, finds extensive applications in various electrochemical energy systems. The volumetric capacity of Al (8046 mAh/cm<sup>3</sup>) is fourfold higher than that of Li (2042 mAh/cm<sup>3</sup>). In addition, the advantages of low cost, safety and environmental friendliness spurred widespread interest in utilizing Al-based alloys, composites, and nanostructured materials to create highly efficient electrodes for electrochemical energy storage systems. Despite its potential, Al-based materials face challenges such as passive oxide layer formation, self-corrosion and compatibility issues with electrolytes leading to low energy and power density, hindering the commercialization of Al-based technologies. This review concentrates on the pivotal role of Al-based materials across various electrochemical platforms such as supercapacitors, fuel cells, and batteries, particularly highlighting Al-air and Al-ion batteries. It explores charge storage mechanisms, methodologies, and the impact of nanostructures on electrochemical reactions. Additionally, it addresses the pertinent challenges associated with recently developed electrode materials and provides future directions for enhancing electrochemical energy conversion devices.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"146 ","pages":"Article 101322"},"PeriodicalIF":37.4,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141424077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photo-responsive electrospun polymer nanofibers: Mechanisms, properties, and applications 光响应电纺聚合物纳米纤维:机理、特性和应用
IF 37.4 1区 材料科学
Progress in Materials Science Pub Date : 2024-05-18 DOI: 10.1016/j.pmatsci.2024.101312
Milad Babazadeh-Mamaqani , Donya Razzaghi , Hossein Roghani-Mamaqani , Amin Babaie , Mostafa Rezaei , Richard Hoogenboom , Mehdi Salami-Kalajahi
{"title":"Photo-responsive electrospun polymer nanofibers: Mechanisms, properties, and applications","authors":"Milad Babazadeh-Mamaqani ,&nbsp;Donya Razzaghi ,&nbsp;Hossein Roghani-Mamaqani ,&nbsp;Amin Babaie ,&nbsp;Mostafa Rezaei ,&nbsp;Richard Hoogenboom ,&nbsp;Mehdi Salami-Kalajahi","doi":"10.1016/j.pmatsci.2024.101312","DOIUrl":"10.1016/j.pmatsci.2024.101312","url":null,"abstract":"<div><p>Photo-responsive polymers have attracted increasing attention due to the unique advantages that light stimulus provides, such as high sensitivity, precise selectivity, temporal and spatial control as well as its non-aggressive nature. Photo-responsivity can be divided into different categories including fluorescence and phosphorescence emission, photochromism, variable wettability and polarity changes, photocatalysis, photodynamic therapy, photo fluidization, photothermal function, photo-induced shape memory effects, and photo-locomotion. The chemical integration or physical doping of the photo-responsive compounds to a polymer matrix could induce such photo-responsivity to the host polymers. In recent years, electrospinning has been used as an effective method to fabricate photo-responsive electrospun nanofibrous mats with improved photo-responsive functionalities due to their porous structure with a high surface-to-volume ratio. This review focuses on the recent developments in photo-responsive electrospun polymer nanofibers. The preparation methods and electrospinning parameters, incorporated photo-responsive compounds, photo-responsive mechanisms, and the application areas of the photo-responsive electrospun nanofibrous mats are covered in detail. In this review, the recent studies on photo-responsive polymer nanofibers will be discussed and arranged based on their application types, such as monitoring and sensing, food packaging, anticounterfeiting, drug delivery, wound healing, bioactivity, membranes, and self-cleaning. Moreover, new strategies are proposed for each application field for the future studies to prepare multi-functional electrospun nanofibers with different morphologies, such as layer-by-layer, core-shell, and Janus nanofibers. It is believed that this review may provide new horizons in the preparation of new photo-responsive electrospun polymer nanofibers with smart applications.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"146 ","pages":"Article 101312"},"PeriodicalIF":37.4,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141140775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward atomic-scale understanding of structure-dynamics-properties relations for metallic glasses 以原子尺度理解金属玻璃的结构-动力学-性能关系
IF 37.4 1区 材料科学
Progress in Materials Science Pub Date : 2024-05-12 DOI: 10.1016/j.pmatsci.2024.101311
Zhen-Ya Zhou , Qun Yang , Hai-Bin Yu
{"title":"Toward atomic-scale understanding of structure-dynamics-properties relations for metallic glasses","authors":"Zhen-Ya Zhou ,&nbsp;Qun Yang ,&nbsp;Hai-Bin Yu","doi":"10.1016/j.pmatsci.2024.101311","DOIUrl":"10.1016/j.pmatsci.2024.101311","url":null,"abstract":"<div><p>Disorder and amorphous systems constitute a large body of modern scientific and technological research, where metallic glasses represent a simple realistic model material for fundamental inquiries and find increasingly widespread applications. Thanks to advances in experimental and computational techniques, recent decades have witnessed substantial progress in elucidating the nature of metallic glass from the atomic levels. We summarize key achievements in atomic packing, structural rearrangements governing the dynamics process, relaxation behaviors, mechanical and functional properties in metallic glasses. It reveals that cooperative and collective motions and dynamic facilitation, occurring at the medium-range order scale, hold the keys for several outstanding issues. We put forward open questions and future challenges and consider what could be done to establish a general glassy theory.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"145 ","pages":"Article 101311"},"PeriodicalIF":37.4,"publicationDate":"2024-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141036603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revolutionizing infrastructure: The evolving landscape of electricity-based multifunctional concrete from concept to practice 革新基础设施:基于电力的多功能混凝土从概念到实践的演变过程
IF 37.4 1区 材料科学
Progress in Materials Science Pub Date : 2024-05-11 DOI: 10.1016/j.pmatsci.2024.101310
Hanyao Qin , Siqi Ding , Ashraf Ashour , Qiaofeng Zheng , Baoguo Han
{"title":"Revolutionizing infrastructure: The evolving landscape of electricity-based multifunctional concrete from concept to practice","authors":"Hanyao Qin ,&nbsp;Siqi Ding ,&nbsp;Ashraf Ashour ,&nbsp;Qiaofeng Zheng ,&nbsp;Baoguo Han","doi":"10.1016/j.pmatsci.2024.101310","DOIUrl":"10.1016/j.pmatsci.2024.101310","url":null,"abstract":"<div><p>Traditional concrete, primarily employed for structural purposes, ensures the safety and reliability of infrastructure due to its excellent mechanical and durability properties. However, with the increasing scale of infrastructure, coupling of multifactorial and harsh service environment, expanding usage spaces, escalating demands for construction-environment harmony, and ever-rising human habitat standards, traditional concrete proves inadequate in meeting the sustainable requirements during construction and service phases, thus prompting its development towards multifunctionality. Electricity, the invisible force that propels modern civilization, has given rise to the emergence of electricity-based multifunctional concrete when combined with tangible concrete that carries human civilization. Through the structure–function integration and function-intelligence integration, this innovative composite material demonstrates excellent intrinsic properties as a structural material, including mechanical performances and durability, and superior electrical properties, such as conductivity, inductance, capacitance, impedance, thermoelectricity, piezoelectricity, among others. It, therefore, holds significant promise across various engineering applications, such as structural health monitoring, traffic detection, energy conversion/storage, de-icing and snow melting, building heating, electromagnetic protection, cathodic protection, grounding, and electrostatic protection. The ongoing research on electricity-based multifunctional concrete establishes a fundamental material framework for the transformation of infrastructure, offering a method to enhance safety, durability, functionality, and resilience of infrastructure. This review summarizes the relevant research progress on electricity-based multifunctional concrete, focusing on its design, composition, underlying principles, properties, and applications in infrastructures. Current technical challenges and future perspectives toward applying electricity-based multifunctional concrete in infrastructures are also discussed.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"145 ","pages":"Article 101310"},"PeriodicalIF":37.4,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141044477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-surface heating membrane distillation for sustainable production of freshwater: A state of the art overview 用于可持续淡水生产的自表面加热膜蒸馏:技术现状概述
IF 37.4 1区 材料科学
Progress in Materials Science Pub Date : 2024-05-03 DOI: 10.1016/j.pmatsci.2024.101309
T.M. Subrahmanya , Hannah Faye M. Austria , Yi-Yun Chen , Owen Setiawan , Januar Widakdo , Mahaveer D. Kurkuri , Wei-Song Hung , Chien-Chieh Hu , Kueir-Rarn Lee , Juin-Yih Lai
{"title":"Self-surface heating membrane distillation for sustainable production of freshwater: A state of the art overview","authors":"T.M. Subrahmanya ,&nbsp;Hannah Faye M. Austria ,&nbsp;Yi-Yun Chen ,&nbsp;Owen Setiawan ,&nbsp;Januar Widakdo ,&nbsp;Mahaveer D. Kurkuri ,&nbsp;Wei-Song Hung ,&nbsp;Chien-Chieh Hu ,&nbsp;Kueir-Rarn Lee ,&nbsp;Juin-Yih Lai","doi":"10.1016/j.pmatsci.2024.101309","DOIUrl":"https://doi.org/10.1016/j.pmatsci.2024.101309","url":null,"abstract":"<div><p>Shortage of freshwater is a global challenge related to population growth, changes in climate conditions and industrial and agricultural needs. Thus, sustainable freshwater production through desalination and wastewater treatment is essential for various human purposes. Membrane distillation (MD) is a recent thermal driven membrane based purification technology with capability to eliminate the limitations of traditional desalination technologies by a synergistic exploitation of the nexus between water and energy. Though MD is recognized as an ecofriendly technology, input heat energy utilization and its efficient management remains a challenge influencing the economic viability of the technology and hindering its realistic applications. To solve this problem, it requires an integrative approach involving materials chemistry, physical chemistry, polymer science, and materials engineering. In addition to the use of robust wetting and fouling resistant membranes, employing the newly developed self-surface heating membranes such as photothermal, joule heating and induction heating membranes have not only minimized energy requirement and fouling issues of MD technology but also enabled it to be considered as potential and economically viable approach for producing high-quality freshwater with negligible carbon footprint. Specifically, recent studies on self-surface heating membranes, utilizing nanomaterials with photothermal, conductive, and magnetic properties, have revealed new possibilities for renewable energy utilization in MD technology. Through direct irradiation or photovoltaic energy conversion, nanomaterial-integrated membranes significantly enhance MD's energy efficiency and productivity without compromising cost-effectiveness, opening avenues for sustainable desalination and water purification technologies. Here, we furnish a comprehensive state of the art overview on (1) the progress of conventional antifouling MD membranes and (2) the opportunities, challenges and limitations of the emerging field of self-surface heated MD (i.e., photothermal MD (PMD), Joule-heating MD and Induction heated MD). We also discuss the exceptional physicochemical properties, antifouling properties, fabrication and scalability of self-surface heating membranes, as well as the strategies for their deployment into MD modules enabling localization of heat at the membrane surface for direct feed heating, thereby leading to sustainable freshwater production.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"145 ","pages":"Article 101309"},"PeriodicalIF":37.4,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140910144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances and future prospects of low-dimensional Mo2C MXene-based electrode for flexible electrochemical energy storage devices 用于柔性电化学储能设备的低维 Mo2C MXene 基电极的最新进展和未来展望
IF 37.4 1区 材料科学
Progress in Materials Science Pub Date : 2024-04-23 DOI: 10.1016/j.pmatsci.2024.101308
Dineshkumar Ponnalagar , Da-Ren Hang , Chi-Te Liang , Mitch M.C. Chou
{"title":"Recent advances and future prospects of low-dimensional Mo2C MXene-based electrode for flexible electrochemical energy storage devices","authors":"Dineshkumar Ponnalagar ,&nbsp;Da-Ren Hang ,&nbsp;Chi-Te Liang ,&nbsp;Mitch M.C. Chou","doi":"10.1016/j.pmatsci.2024.101308","DOIUrl":"10.1016/j.pmatsci.2024.101308","url":null,"abstract":"<div><p>This paper provides an in-depth overview of the recent advances and future prospects in utilizing two-dimensional Mo<sub>2</sub>C MXene for flexible electrochemical energy storage devices. Mo<sub>2</sub>C MXene exhibits exceptional properties, such as high electrical conductivity, mechanical flexibility, and a large surface area, which make it a promising material for diverse energy storage applications, including lithium-ion batteries, lithium-sulfur batteries, sodium-ion batteries, and supercapacitors. The review begins by discussing the various synthesis methods and characterization techniques employed to fabricate flexible Mo<sub>2</sub>C MXene-based composites. It then delves into detailed analyses of the electrochemical performance of these composites in different energy storage systems. The optimal temperature and duration for synthesizing flexible Mo<sub>2</sub>C MXene materials are examined, with a focus on their influence on specific capacity, current density, and cycle life. Furthermore, the review investigates the synergistic effects of incorporating flexible Mo<sub>2</sub>C MXene with other materials, such as graphene, carbon nanofibers, carbon nanotubes, nanowires, nanorods, and porous materials. The objective is to explore how these supporting materials can enhance flexibility and surpass existing energy storage technologies, particularly in the context of lithium-ion batteries, lithium-sulfur batteries, sodium-ion batteries, and supercapacitors. The concluding section addresses the future prospects and challenges in the field.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"145 ","pages":"Article 101308"},"PeriodicalIF":37.4,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140781814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable polymer composite marine structures: Developments and challenges 可持续聚合物复合海洋结构:发展与挑战
IF 37.4 1区 材料科学
Progress in Materials Science Pub Date : 2024-04-21 DOI: 10.1016/j.pmatsci.2024.101307
Christophe Baley , Peter Davies , Wilfried Troalen , Alexandre Chamley , Imogen Dinham-Price , Adrien Marchandise , Vincent Keryvin
{"title":"Sustainable polymer composite marine structures: Developments and challenges","authors":"Christophe Baley ,&nbsp;Peter Davies ,&nbsp;Wilfried Troalen ,&nbsp;Alexandre Chamley ,&nbsp;Imogen Dinham-Price ,&nbsp;Adrien Marchandise ,&nbsp;Vincent Keryvin","doi":"10.1016/j.pmatsci.2024.101307","DOIUrl":"10.1016/j.pmatsci.2024.101307","url":null,"abstract":"<div><p>The marine industry has been a major user of polymer composites for over 50 years. There has been a strong historical preference for glass fibre reinforced thermoset polymers, mainly polyesters and epoxies, but manufacturers are starting to realize that the current materials and practices are not sustainable. As a result, there is increasing interest in alternative materials, which offer the prospects of lower carbon footprints, reduced environmental impacts or both. The design decisions made today are critical, as many marine structures are designed for 20 to 30 years lifetime. In order to focus on viable solutions, it is essential to base these decisions on a balanced overview of the many new materials and processes. This review provides an up-to-date evaluation of emerging material options, fibres, matrix polymers and sandwich core and associated manufacturing developments. First, materials for the pleasure boat industry are discussed. Then high performance carbon fibre composite applications are described. These are discussed with respect to end of life scenarios such as re-use and recycling, life cycle assessment is examined. Recent examples of changes in material selection philosophy and associated benefits for sustainability illustrate what is possible and what remains to be done.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"145 ","pages":"Article 101307"},"PeriodicalIF":37.4,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140777791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging high-entropy compounds for electrochemical energy storage and conversion 用于电化学能量储存和转换的新兴高熵化合物
IF 37.4 1区 材料科学
Progress in Materials Science Pub Date : 2024-04-18 DOI: 10.1016/j.pmatsci.2024.101300
Da Liu , Peifang Guo , Hongge Pan , Renbing Wu
{"title":"Emerging high-entropy compounds for electrochemical energy storage and conversion","authors":"Da Liu ,&nbsp;Peifang Guo ,&nbsp;Hongge Pan ,&nbsp;Renbing Wu","doi":"10.1016/j.pmatsci.2024.101300","DOIUrl":"https://doi.org/10.1016/j.pmatsci.2024.101300","url":null,"abstract":"<div><p>As a new member in high-entropy materials family developed after high-entropy alloys, high-entropy compounds (HECs) are of particular interest owing to the combination of superiorities from high entropy and cocktail effects. The discovery of HECs indeed opens up a new frontier in the field of energy storage and conversion. This article provides a comprehensive review of the new frontiers on HECs for energy-related application. It begins with the fundamentals of HECs, with an emphasis on thermodynamic and structural features, and characterizations of HECs. Discussion is then made on the synthetic strategies of component optimization and structure engineering for the developing various HECs. Thereafter, the application of HECs particularly in electrodes for rechargeable batteries and supercapacitors, electrolytes for batteries, electrocatalytic hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO<sub>2</sub>RR) are highlighted. Finally, this review is concluded with an outlook of future research on HECs, major challenges to be addressed and possible solutions.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"145 ","pages":"Article 101300"},"PeriodicalIF":37.4,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140643693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信