Anbazhagan Sathiyaseelan , Xin Zhang , Yuting Lu , Nazeer Abdul Azeez , Lina Zhang , Gopal Shankar Krishnakumar , Myeong-Hyeon Wang
{"title":"探索壳聚糖功能化金属有机框架的合成、特性及其在新兴应用领域的潜力","authors":"Anbazhagan Sathiyaseelan , Xin Zhang , Yuting Lu , Nazeer Abdul Azeez , Lina Zhang , Gopal Shankar Krishnakumar , Myeong-Hyeon Wang","doi":"10.1016/j.pmatsci.2024.101387","DOIUrl":null,"url":null,"abstract":"<div><div>Chitosan (CS), a natural cationic biopolymer derived from chitin, has emerged as a promising component for synthesizing biological/bioinspired metal–organic frameworks (BioMOFs). CS’s biodegradability, low toxicity, mucoadhesive properties, and biocompatibility due to its amino and hydroxyl groups make it ideal for developing BioMOFs with applications in biomedicine, catalysis, sensing, food and environmental remediation. CS-based MOFs combine the structural diversity and tunability of MOFs (metal ions and organic linkers) with CS’s inherent advantages, expanding the possibilities for designing functional materials with tailored properties. Incorporating CS into MOF synthesis modulates surface chemistry, pore size, structure, stability, and biocompatibility, making BioMOFs suitable for various biomedical applications (therapeutics, stimuli-responsive drug delivery, antibacterial, anti-inflammatory, wound healing, antidiabetic, and anticancer), food technology (preservation, coating and packaging), and environmental remediation (dye, antibiotic, pesticide removal as sorbents and photocatalysts). This review explores the preparation, properties, and applications of biopolymer CS-based MOFs, which have not been comprehensively summarized in previous reviews. We discuss the potential applications of BioMOFs in biomedicine, environmental remediation, and other fields, highlighting their versatility and potential impact. By comprehensively analyzing recent advancements and challenges in CS-based MOFs, this review aims to provide insights into future directions and opportunities for leveraging CS’s unique properties in MOF design and applications.</div></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"148 ","pages":"Article 101387"},"PeriodicalIF":33.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the synthesis, properties, and potential of chitosan-functionalized metal-organic frameworks in emerging applications\",\"authors\":\"Anbazhagan Sathiyaseelan , Xin Zhang , Yuting Lu , Nazeer Abdul Azeez , Lina Zhang , Gopal Shankar Krishnakumar , Myeong-Hyeon Wang\",\"doi\":\"10.1016/j.pmatsci.2024.101387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Chitosan (CS), a natural cationic biopolymer derived from chitin, has emerged as a promising component for synthesizing biological/bioinspired metal–organic frameworks (BioMOFs). CS’s biodegradability, low toxicity, mucoadhesive properties, and biocompatibility due to its amino and hydroxyl groups make it ideal for developing BioMOFs with applications in biomedicine, catalysis, sensing, food and environmental remediation. CS-based MOFs combine the structural diversity and tunability of MOFs (metal ions and organic linkers) with CS’s inherent advantages, expanding the possibilities for designing functional materials with tailored properties. Incorporating CS into MOF synthesis modulates surface chemistry, pore size, structure, stability, and biocompatibility, making BioMOFs suitable for various biomedical applications (therapeutics, stimuli-responsive drug delivery, antibacterial, anti-inflammatory, wound healing, antidiabetic, and anticancer), food technology (preservation, coating and packaging), and environmental remediation (dye, antibiotic, pesticide removal as sorbents and photocatalysts). This review explores the preparation, properties, and applications of biopolymer CS-based MOFs, which have not been comprehensively summarized in previous reviews. We discuss the potential applications of BioMOFs in biomedicine, environmental remediation, and other fields, highlighting their versatility and potential impact. By comprehensively analyzing recent advancements and challenges in CS-based MOFs, this review aims to provide insights into future directions and opportunities for leveraging CS’s unique properties in MOF design and applications.</div></div>\",\"PeriodicalId\":411,\"journal\":{\"name\":\"Progress in Materials Science\",\"volume\":\"148 \",\"pages\":\"Article 101387\"},\"PeriodicalIF\":33.6000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079642524001567\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642524001567","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Exploring the synthesis, properties, and potential of chitosan-functionalized metal-organic frameworks in emerging applications
Chitosan (CS), a natural cationic biopolymer derived from chitin, has emerged as a promising component for synthesizing biological/bioinspired metal–organic frameworks (BioMOFs). CS’s biodegradability, low toxicity, mucoadhesive properties, and biocompatibility due to its amino and hydroxyl groups make it ideal for developing BioMOFs with applications in biomedicine, catalysis, sensing, food and environmental remediation. CS-based MOFs combine the structural diversity and tunability of MOFs (metal ions and organic linkers) with CS’s inherent advantages, expanding the possibilities for designing functional materials with tailored properties. Incorporating CS into MOF synthesis modulates surface chemistry, pore size, structure, stability, and biocompatibility, making BioMOFs suitable for various biomedical applications (therapeutics, stimuli-responsive drug delivery, antibacterial, anti-inflammatory, wound healing, antidiabetic, and anticancer), food technology (preservation, coating and packaging), and environmental remediation (dye, antibiotic, pesticide removal as sorbents and photocatalysts). This review explores the preparation, properties, and applications of biopolymer CS-based MOFs, which have not been comprehensively summarized in previous reviews. We discuss the potential applications of BioMOFs in biomedicine, environmental remediation, and other fields, highlighting their versatility and potential impact. By comprehensively analyzing recent advancements and challenges in CS-based MOFs, this review aims to provide insights into future directions and opportunities for leveraging CS’s unique properties in MOF design and applications.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.