{"title":"Recent progress in chemical vapor deposition growth of two-dimensional transition metal dichalcogenides","authors":"Swee Liang Wong, Hongfei Liu, Dongzhi Chi","doi":"10.1016/j.pcrysgrow.2016.06.002","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2016.06.002","url":null,"abstract":"<div><p><span>Two-dimensional (2D) transition metal dichalcogenides<span> (TMDCs) have received significant attention recently due to their unique properties such as a transition from indirect to direct band gap when thinned down to a monolayer and also valley-dependent photoluminescence. In addition, being a semiconductor with considerable mobility, it has been touted as a candidate in next generation electronics. However, a major hurdle to its implementation is the difficulty in producing large areas of these 2D TMDCs with well-defined thicknesses. In this review, we will first introduce the basic properties as well as the various synthesis methods of 2D TMDCs. Focus will be placed on recent advances in </span></span>chemical vapor deposition (CVD) growth as they currently yield the largest areas. Obstacles present in CVD growth will be presented and existing solutions to them will be discussed in tandem with current characterization methods for evaluation of crystal quality. Through our presentation on the latest approaches to issues in CVD growth, we hope to present the readers a perspective on recent developments as well as providing an outlook on the future of CVD growth of TMDCs.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 3","pages":"Pages 9-28"},"PeriodicalIF":5.1,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.06.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2685053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manuel Prieto , Frank Heberling , Rosa M. Rodríguez-Galán , Felix Brandt
{"title":"Crystallization behavior of solid solutions from aqueous solutions: An environmental perspective","authors":"Manuel Prieto , Frank Heberling , Rosa M. Rodríguez-Galán , Felix Brandt","doi":"10.1016/j.pcrysgrow.2016.05.001","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2016.05.001","url":null,"abstract":"<div><p>Aqueous–solid solution (AQ-SS) processes have garnered increasing attention from geochemists and environmental engineers because they play major roles in the fate and transport of elements in Earth surface environments. The reasons for this interest include: (i) the primary crystallization of minerals from multicomponent aqueous solutions leads to the formation of solid solutions in which different ions are substituted for one another in equivalent structural positions; (ii) the interaction between pre-existing minerals and water frequently yields surface precipitation and dissolution–recrystallization processes in which such substituting ions redistribute to adapt to new physicochemical conditions; (iii) the concentrations of specific minor elements in biogenic and abiogenic minerals have been shown to correlate with various parameters characterizing the growth environment (temperature, pH, nutrient levels, salinity, etc.) and the corresponding compositional signatures can be powerful tools in reconstructing the past from the sedimentary record; (iv) the aqueous concentration of heavy metals and other harmful ions can be significantly reduced by their incorporation into the structure of suitable host minerals and as such a ‘reduction of solubility’ can be exploited as a remediation strategy or used to design engineered barriers for the retention of metals, radionuclides<span>, and other industrially generated inorganic wastes. In this review, the thermodynamics driving of AQ-SS processes is presented using examples of environmentally-relevant systems. The reaction pathways in AQ-SS processes depend not only on thermodynamic factors but also on kinetic and mechanistic effects, which operate at different scales in space and time. Examples of such effects include non-equilibrium ion partitioning, surface passivation<span>, and compositional (sectorial, concentric, oscillatory) zoning. Finally, we discuss the contribution of both state-of-the-art characterization techniques and molecular simulation methods for the development of predictive models.</span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 3","pages":"Pages 29-68"},"PeriodicalIF":5.1,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.05.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2324714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spring and parachute: How cocrystals enhance solubility","authors":"Dhara D. Bavishi, Chetan H. Borkhataria","doi":"10.1016/j.pcrysgrow.2016.07.001","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2016.07.001","url":null,"abstract":"<div><p>This article is intended to combine literature on cocrystallization – a tool for enhancing the solubility and for improving the physicochemical properties of an API (an API is the molecule which is responsible for providing the therapeutic effect) with special emphasis on the mechanism responsible for the same. The pharmaceutical industries are witnessing a developing crisis in the process of drug development due to the increasing cost of their R&D departments, the failure of some blockbuster drug candidates exhibiting poor aqueous solubility and the unavailability of newer molecules because of patent limitations. Cocrystallization is an emerging approach to improve solubility, dissolution profile, bioavailability, and other physicochemical and mechanical properties<span><span> of an API. A pharmaceutical cocrystal is now a new epitome which enables the use of a wide range of active pharmaceutical ingredients without the need to form or break the covalent bonds. The prime focus of this review article is the mechanism on how cocrystals have a solubility advantage over the </span>amorphous<span> form. This review also provides a brief introduction to the nature of cocrystals, their role, principles of crystal engineering and also highlights the nature of supramolecular synthons which are present in cocrystals.</span></span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 3","pages":"Pages 1-8"},"PeriodicalIF":5.1,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.07.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3385829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of GaN-based blue LEDs and metalorganic vapor phase epitaxy of GaN and related materials","authors":"Hiroshi Amano","doi":"10.1016/j.pcrysgrow.2016.04.006","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2016.04.006","url":null,"abstract":"<div><p><span><span>This article combines two papers, “Nobel Lecture: Growth of GaN on sapphire via low-temperature deposited buffer layer and realization of p-type GaN by Mg doping followed by low-energy </span>electron beam irradiation,” Rev. Mod. Phys., 87 (2015) 1133, and “MOCVD of </span>nitrides,” Handbook of Crystal Growth Second Edition, Volume III, Part A, Chapter 16, Elsevier, 683–704, 2015. For more detailed information, please read the two original papers.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 126-135"},"PeriodicalIF":5.1,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3385832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introduction to the BCF theory","authors":"Makio Uwaha","doi":"10.1016/j.pcrysgrow.2016.04.002","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2016.04.002","url":null,"abstract":"<div><p>Sixty-five years have passed since Burton, Cabrera and Frank (BCF) published the seminal paper (W. K. Burton, N. Cabrera and F. C. Frank, Phil. Trans. Royal Soc. London, 243 (1951), 299). Since then, the paper provided us the basic scheme of growth of crystals. In this lecture, the BCF theory is introduced for beginners as the basis of modern crystal growth study. The BCF theory explained the growth of facets with the help of screw dislocations<span>. It introduced the concept of the roughening transition, which distinguishes the crucial difference of lateral growth of facets and normal growth of round surfaces.</span></p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 58-68"},"PeriodicalIF":5.1,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2600871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assembling interferometers and in-situ observation of ambient environments and solid–liquid interfaces","authors":"Yuki Kimura , Kenta Murayama , Tomoya Yamazaki , Takao Maki","doi":"10.1016/j.pcrysgrow.2016.04.022","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2016.04.022","url":null,"abstract":"<div><p><span>The principle of interferometers and its applicability to our research on crystal growth can be understood through assembling interferometers. In particular, practical skills such as techniques for assembling interferometers and selecting </span>optical components, which are not covered by general textbooks, can be learned.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 400-403"},"PeriodicalIF":5.1,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2600883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heusler compounds and spintronics","authors":"Chris J. Palmstrøm","doi":"10.1016/j.pcrysgrow.2016.04.020","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2016.04.020","url":null,"abstract":"<div><p><span><span><span><span>Heusler compounds<span><span> are a large group of intermetallic compounds<span> with over 1000 members with similar crystal structures having a vast array of tunable properties. These properties depend on the number of valence electrons per formula unit allowing tuning of properties through composition and alloying. The Heusler lattice parameters span many </span></span>metal oxides and semiconductors and their crystal structures are closely related. For </span></span>spintronic<span> applications, the magnetic and half-metallic properties, in particular, are of great interest. In this paper the electronic and magnetic properties of Heusler compounds are discussed as well as the importance of composition and defect control on tailoring their properties. Examples of applications include the great success of Heusler magnetic </span></span>tunnel junction<span> in metallic spintronic devices. The potential of going beyond metallic spintronics to the integration of Heusler compounds with III–V semiconductors for semiconductor spintronics device physics and technology, the tuning of magnetic properties, and the fabrication of Heusler compound </span></span>heterostructures and </span>superlattices are also discussed.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 371-397"},"PeriodicalIF":5.1,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3385834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"In-situ observation of colloidal crystallization","authors":"Junpei Yamanaka , Yoshihisa Suzuki , Jun Nozawa , Tsutomu Sawada","doi":"10.1016/j.pcrysgrow.2016.04.025","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2016.04.025","url":null,"abstract":"<div><p>We report contents of colloidal crystallization experiments in ISSCG-16. The participants produce two kinds of colloidal crystals, i.e., close-packed opal type crystals, and non-close-packed charged colloidal crystals. They can observe the crystallization processes by using optical microscopy and reflection spectroscopy.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 413-416"},"PeriodicalIF":5.1,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"3385836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mesostructured crystals: Growth processes and features","authors":"Hiroaki Imai","doi":"10.1016/j.pcrysgrow.2016.04.011","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2016.04.011","url":null,"abstract":"<div><p><span>Sophisticated architectures consisting of oriented small crystalline blocks are widely observed in biological and biomimetic<span> minerals. Here, mesostructured crystals are categorized in a new family of crystalline states as intermediate between faceted single crystals<span> and polycrystals that are random arrangements of small grains. A variety of hierarchical architectures, such as mesocrystals consisting of isolated nanoblocks, granular textures of </span></span></span>biominerals, and helical crystals, are included in the mesostructured crystals. The formation routes of the mesostructured crystals are described on the basis of the specific interaction of crystals and organic molecules or matrices. Moreover, specific features of the particular crystalline states are shown with their unique functions originating from the hierarchical architectures.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 212-226"},"PeriodicalIF":5.1,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2600878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Growth and low-energy electron microscopy characterizations of graphene and hexagonal boron nitride","authors":"H. Hibino , S. Wang , C.M. Orofeo , H. Kageshima","doi":"10.1016/j.pcrysgrow.2016.04.008","DOIUrl":"https://doi.org/10.1016/j.pcrysgrow.2016.04.008","url":null,"abstract":"<div><p>Graphene and related two-dimensional (2D) materials are attracting huge attention due to their wide-range potential applications. Because large-scale, high-quality 2D crystals are prerequisites for many of the applications, crystal growth of 2D materials has been intensively studied. We have also been conducting research to understand the growth mechanism of 2D materials and have been developing growth techniques of high-quality materials based on the understandings, in which detailed structural characterizations using low-energy electron microscopy (LEEM) have played essential roles. In this paper, we explain the principles of obtaining various structural features using LEEM, and then we review the status of our current understanding on the growth of graphene and hexagonal boron nitride.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 155-176"},"PeriodicalIF":5.1,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"2600876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}