{"title":"Heusler compounds and spintronics","authors":"Chris J. Palmstrøm","doi":"10.1016/j.pcrysgrow.2016.04.020","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span><span>Heusler compounds<span><span> are a large group of intermetallic compounds<span> with over 1000 members with similar crystal structures having a vast array of tunable properties. These properties depend on the number of valence electrons per formula unit allowing tuning of properties through composition and alloying. The Heusler lattice parameters span many </span></span>metal oxides and semiconductors and their crystal structures are closely related. For </span></span>spintronic<span> applications, the magnetic and half-metallic properties, in particular, are of great interest. In this paper the electronic and magnetic properties of Heusler compounds are discussed as well as the importance of composition and defect control on tailoring their properties. Examples of applications include the great success of Heusler magnetic </span></span>tunnel junction<span> in metallic spintronic devices. The potential of going beyond metallic spintronics to the integration of Heusler compounds with III–V semiconductors for semiconductor spintronics device physics and technology, the tuning of magnetic properties, and the fabrication of Heusler compound </span></span>heterostructures and </span>superlattices are also discussed.</p></div>","PeriodicalId":409,"journal":{"name":"Progress in Crystal Growth and Characterization of Materials","volume":"62 2","pages":"Pages 371-397"},"PeriodicalIF":4.5000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pcrysgrow.2016.04.020","citationCount":"94","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Crystal Growth and Characterization of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960897416300237","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 94
Abstract
Heusler compounds are a large group of intermetallic compounds with over 1000 members with similar crystal structures having a vast array of tunable properties. These properties depend on the number of valence electrons per formula unit allowing tuning of properties through composition and alloying. The Heusler lattice parameters span many metal oxides and semiconductors and their crystal structures are closely related. For spintronic applications, the magnetic and half-metallic properties, in particular, are of great interest. In this paper the electronic and magnetic properties of Heusler compounds are discussed as well as the importance of composition and defect control on tailoring their properties. Examples of applications include the great success of Heusler magnetic tunnel junction in metallic spintronic devices. The potential of going beyond metallic spintronics to the integration of Heusler compounds with III–V semiconductors for semiconductor spintronics device physics and technology, the tuning of magnetic properties, and the fabrication of Heusler compound heterostructures and superlattices are also discussed.
期刊介绍:
Materials especially crystalline materials provide the foundation of our modern technologically driven world. The domination of materials is achieved through detailed scientific research.
Advances in the techniques of growing and assessing ever more perfect crystals of a wide range of materials lie at the roots of much of today''s advanced technology. The evolution and development of crystalline materials involves research by dedicated scientists in academia as well as industry involving a broad field of disciplines including biology, chemistry, physics, material sciences and engineering. Crucially important applications in information technology, photonics, energy storage and harvesting, environmental protection, medicine and food production require a deep understanding of and control of crystal growth. This can involve suitable growth methods and material characterization from the bulk down to the nano-scale.