{"title":"Real-Time Trainable Data Converters for General Purpose Applications","authors":"Loai Danial, Shahar Kvatinsky","doi":"10.1145/3232195.3232209","DOIUrl":"https://doi.org/10.1145/3232195.3232209","url":null,"abstract":"Data converters are ubiquitous in data-abundant systems, where they are heterogeneously distributed across the analog-digital interface. Unfortunately, conventional data converters trade off speed, power, and accuracy. Furthermore, intrinsic real-time and post-silicon variations dramatically degrade their performance. In this paper, we employ novel neuro-inspired approaches to design smart data converters that could be trained in real-time for general purpose applications, using machine learning algorithms and artificial neural network architectures. Our approach integrates emerging memristor technology with CMOS. This concept will pave the way towards adaptive interfaces with the continuous varying conditions of data driven applications.","PeriodicalId":401010,"journal":{"name":"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128515993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Rallis, G. Sirakoulis, I. Karafyllidis, A. Rubio
{"title":"Multi-Valued Logic Circuits on Graphene Quantum Point Contact Devices","authors":"K. Rallis, G. Sirakoulis, I. Karafyllidis, A. Rubio","doi":"10.1145/3232195.3232214","DOIUrl":"https://doi.org/10.1145/3232195.3232214","url":null,"abstract":"Graphene quantum point contacts (G-QPC) combine switching operations with quantized conductance, which can be modulated by top and back gates. Here we use the conductance quantization to design and simulate multi-valued logic (MVL) circuits and, more specifically an adder. The adder comprises two G-QPCs connected in parallel. We compute the conductance of the adder for various inputs and show that Graphene MVL circuits are feasible.","PeriodicalId":401010,"journal":{"name":"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"35 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114011619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Energy Efficiency of Low Swing Signaling for Emerging Interposer Technologies","authors":"E. Maragkoudaki, P. Mroszczyk, V. Pavlidis","doi":"10.1145/3232195.3232203","DOIUrl":"https://doi.org/10.1145/3232195.3232203","url":null,"abstract":"Interconnects often constitute the major bottleneck in the design process of low power integrated circuits (IC). Although 2.5-D integration technologies support physical proximity, the dissipated power in the communication links remains high. In this work, the additional power savings for interposer-based interconnects enabled by low swing signaling is investigated. The energy consumed by a low swing scheme is, therefore, compared with a full swing solution and the critical length of the interconnect, above which the low swing solution starts to pay off, is determined for diverse interposer technologies. The energy consumption is compared for three different substrate materials, silicon, glass, and organic. Results indicate that the higher the load capacitance of the communication medium is, the greater the energy savings of the low swing circuit are. Specifically, in cases that electrostatic discharge (ESD) protection is required, the low swing circuit is always superior in terms of energy consumption due to the high capacitive load of the ESD circuit, regardless the substrate material and the link length. Without ESD protection, the highest critical length is about 380 μm for glass and organic interposers. To further explore the limits of power reduction from low swing signaling for 2.5-D ICs, the effect of typical interconnect parameters such as width and space on the energy efficiency of low swing communication is evaluated.","PeriodicalId":401010,"journal":{"name":"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130897075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammed Ceylan Morgül, O. Tunali, M. Altun, L. Frontini, V. Ciriani, E. Vatajelu, L. Anghel, C. A. Moritz, M. Stan, D. Alexandrescu
{"title":"Integrated Synthesis Methodology for Crossbar Arrays","authors":"Muhammed Ceylan Morgül, O. Tunali, M. Altun, L. Frontini, V. Ciriani, E. Vatajelu, L. Anghel, C. A. Moritz, M. Stan, D. Alexandrescu","doi":"10.1145/3232195.3232211","DOIUrl":"https://doi.org/10.1145/3232195.3232211","url":null,"abstract":"Nano-crossbar arrays have emerged as area and power efficient structures with an aim of achieving high performance computing beyond the limits of current CMOS. Due to the stochastic nature of nano-fabrication, nano arrays show different properties both in structural and physical device levels compared to conventional technologies. Mentioned factors introduce random characteristics that need to be carefully considered by synthesis process. For instance, a competent synthesis methodology must consider basic technology preference for switching elements, defect or fault rates of the given nano switching array and the variation values as well as their effects on performance metrics including power, delay, and area. Presented synthesis methodology in this study comprehensively covers the all specified factors and provides optimization algorithms for each step of the process.","PeriodicalId":401010,"journal":{"name":"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"258 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116232338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Aging Resilient Neural Network Architecture","authors":"S. Mozaffari, K. Gnawali, S. Tragoudas","doi":"10.1145/3232195.3232208","DOIUrl":"https://doi.org/10.1145/3232195.3232208","url":null,"abstract":"Recent artificial neural network architectures use memristors to store synaptic weights. The crossbar structure of memristors is used because of its dense structure and extreme parallelism. Transistor aging impacts their computational accuracy. An enhancement of the memristor-based neural network architecture is introduced using built-in current-based calibration circuit. It is shown experimentally that the proposed approach alleviates the cell aging effect.","PeriodicalId":401010,"journal":{"name":"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122368048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Complementary Arranged Graphene Nanoribbon-based Boolean Gates","authors":"Yande Jiang, N. C. Laurenciu, S. Cotofana","doi":"10.1145/3232195.3232199","DOIUrl":"https://doi.org/10.1145/3232195.3232199","url":null,"abstract":"With CMOS feature size heading towards atomic dimensions, unjustifiable static power, reliability, and economic implications are exacerbating, prompting for research on new materials, devices, and/or computation paradigms. Within this context, Graphene Nanorib-bons (GNRs), owing to graphene’s excellent electronic properties, may serve as basic blocks for carbon-based nanoelectronics. In this paper we build upon the fact that GNR behaviour can be controlled according to some desired functionality via top/back gate contacts and propose to combine GNRs with complementary functionalities to construct Boolean gates. To this end, we introduce a generic GNR-based Boolean gate structure, composed of two GNRs, i.e., a pull-up GNR performing the gate Boolean function and a pull-down GNR performing the inverted Boolean function. Subsequently, by properly adjusting GNRs’ dimensions and topology, we design 2-input AND, NAND, and XOR graphene-based Boolean gates, as well as 1-input gates, i.e., inverter and buffer. Our SPICE simulations indicate that the proposed gates exhibit a smaller propagation delay, from 23% for the XOR gate to 6× for the AND gate, and 2 orders of magnitude smaller power consumption, when compared with 7 nm CMOS based counterparts, while requiring a 1 to 2 orders of magnitude smaller active area footprint. These results clearly indicate that GNR-based gates have great potential as basic building blocks for future beyond CMOS energy effective nanoscale circuits.","PeriodicalId":401010,"journal":{"name":"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125046081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Crosstalk based Fine-Grained Reconfiguration Techniques for Polymorphic Circuits","authors":"Naveen Kumar Macha, Sandeep Geedipally, Bhavana Tejaswini Repalle, Md Arif Iqbal, Wafi Danesh, Mostafizur Rahman","doi":"10.1145/3232195.3232227","DOIUrl":"https://doi.org/10.1145/3232195.3232227","url":null,"abstract":"Truly polymorphic circuits, whose functionality/circuit behavior can be altered using a control variable, can provide tremendous benefits in multi-functional system design and resource sharing. For secure and fault tolerant hardware designs these can be crucial as well. Polymorphic circuits work in literature so far either rely on environmental parameters such as temperature, variation etc. or on special devices such as ambipolar FET, configurable magnetic devices, etc., that often result in inefficiencies in performance and/or realization. In this paper, we introduce a novel polymorphic circuit design approach where deterministic interference between nano-metal lines is leveraged for logic computing and configuration. For computing, the proposed approach relies on nano-metal lines, their interference and commonly used FETs. For polymorphism, it requires only an extra metal line that carries the control signal. In this paper, we show a wide range of crosstalk polymorphic logic gates and their evaluation results. We also show an example of a large circuit that performs both the functionalities of multiplier and sorter depending on the configuration signal. A comparison is made with respect to other existing approaches in literature, and transistor count is benchmarked. For crosstalk-polymorphic circuits, the transistor count reduction range from 25% to 83% with respect to various other approaches. For example, polymorphic AOI21-OA21 cell show 83%, 85% and 50% transistor count reduction, and Multiplier-Sorter circuit show 40%, 36% and 28% transistor count reduction with respect to CMOS, genetically evolved, and ambipolar transistor based polymorphic circuits, respectively.","PeriodicalId":401010,"journal":{"name":"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130065564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Power Analysis of an mRNA-Ribosome System","authors":"P. Chatterjee, P. Ghosal","doi":"10.1145/3232195.3232223","DOIUrl":"https://doi.org/10.1145/3232195.3232223","url":null,"abstract":"Energy is the heart to drive any device, such as any machine. As researchers have been trying to perform low energy operations more and more, energy requirements are turning out to be one of the key features in measuring the performance of a device. On the other hand, as conventional silicon-based computing is approaching a barrier, needs of non-conventional computing is increasing. Though several such computing platforms have arisen to prove itself as a suitable alternative to silicon-based computing, less energy requirement is certainly one of the most sought features in the competition among the new platforms. Moreover, there are certain scenarios where performing calculations in pure bio-molecular ways are highly desired. Although DNA computing has already flagged the success of bio-molecular computing in terms of energy/power requirements, its manual nature keeps it behind from other computing techniques. Another new bio-molecular computing technique Ribosomal Computing, though still in infancy, has shown real promises due to its inherent automation. This work performs an analysis of the energy/power requirements of this computing technique. With the promising result obtained, ribosomal computing can claim itself as a promising computing technique, if combined with its inherent automation.","PeriodicalId":401010,"journal":{"name":"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129539394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Controlling distilleries in fault-tolerant quantum circuits: problem statement and analysis towards a solution","authors":"A. Paler","doi":"10.1145/3232195.3232224","DOIUrl":"https://doi.org/10.1145/3232195.3232224","url":null,"abstract":"The failure susceptibility of the quantum hardware will force quantum computers to execute fault-tolerant quantum circuits. These circuits are based on quantum error correcting codes, and there is increasing evidence that one of the most practical choices is the surface code. Design methodologies of surface code based quantum circuits were focused on the layout of such circuits without emphasizing the reduced availability of hardware and its effect on the execution time. Circuit layout has not been investigated for practical scenarios, and the problem presented herein was neglected until now. For achieving fault-tolerance and implementing surface code based computations, a significant amount of computing resources (hardware and time) are necessary for preparing special quantum states in a procedure called distillation. This work introduces the problem of how distilleries (circuit portions responsible for state distillation) influence the layout of surface code protected quantum circuits, and analyses the trade-offs for reducing the resources necessary for executing the circuits. A first algorithmic solution is presented, implemented and evaluated for addition quantum circuits.","PeriodicalId":401010,"journal":{"name":"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130523046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}