新兴中介技术低摆幅信号的能源效率

E. Maragkoudaki, P. Mroszczyk, V. Pavlidis
{"title":"新兴中介技术低摆幅信号的能源效率","authors":"E. Maragkoudaki, P. Mroszczyk, V. Pavlidis","doi":"10.1145/3232195.3232203","DOIUrl":null,"url":null,"abstract":"Interconnects often constitute the major bottleneck in the design process of low power integrated circuits (IC). Although 2.5-D integration technologies support physical proximity, the dissipated power in the communication links remains high. In this work, the additional power savings for interposer-based interconnects enabled by low swing signaling is investigated. The energy consumed by a low swing scheme is, therefore, compared with a full swing solution and the critical length of the interconnect, above which the low swing solution starts to pay off, is determined for diverse interposer technologies. The energy consumption is compared for three different substrate materials, silicon, glass, and organic. Results indicate that the higher the load capacitance of the communication medium is, the greater the energy savings of the low swing circuit are. Specifically, in cases that electrostatic discharge (ESD) protection is required, the low swing circuit is always superior in terms of energy consumption due to the high capacitive load of the ESD circuit, regardless the substrate material and the link length. Without ESD protection, the highest critical length is about 380 μm for glass and organic interposers. To further explore the limits of power reduction from low swing signaling for 2.5-D ICs, the effect of typical interconnect parameters such as width and space on the energy efficiency of low swing communication is evaluated.","PeriodicalId":401010,"journal":{"name":"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy Efficiency of Low Swing Signaling for Emerging Interposer Technologies\",\"authors\":\"E. Maragkoudaki, P. Mroszczyk, V. Pavlidis\",\"doi\":\"10.1145/3232195.3232203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interconnects often constitute the major bottleneck in the design process of low power integrated circuits (IC). Although 2.5-D integration technologies support physical proximity, the dissipated power in the communication links remains high. In this work, the additional power savings for interposer-based interconnects enabled by low swing signaling is investigated. The energy consumed by a low swing scheme is, therefore, compared with a full swing solution and the critical length of the interconnect, above which the low swing solution starts to pay off, is determined for diverse interposer technologies. The energy consumption is compared for three different substrate materials, silicon, glass, and organic. Results indicate that the higher the load capacitance of the communication medium is, the greater the energy savings of the low swing circuit are. Specifically, in cases that electrostatic discharge (ESD) protection is required, the low swing circuit is always superior in terms of energy consumption due to the high capacitive load of the ESD circuit, regardless the substrate material and the link length. Without ESD protection, the highest critical length is about 380 μm for glass and organic interposers. To further explore the limits of power reduction from low swing signaling for 2.5-D ICs, the effect of typical interconnect parameters such as width and space on the energy efficiency of low swing communication is evaluated.\",\"PeriodicalId\":401010,\"journal\":{\"name\":\"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3232195.3232203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3232195.3232203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

互连往往是低功耗集成电路设计过程中的主要瓶颈。尽管2.5维集成技术支持物理接近,但通信链路中的耗散功率仍然很高。在这项工作中,研究了通过低摆幅信令实现的基于中间层的互连的额外功耗节省。因此,将低摆幅方案所消耗的能量与全摆幅方案进行比较,并根据不同的中间器技术确定低摆幅方案开始发挥作用的互连的临界长度。能源消耗比较了三种不同的衬底材料,硅,玻璃和有机。结果表明,通信介质的负载电容越高,低摆幅电路的节能效果越大。具体来说,在需要静电放电(ESD)保护的情况下,无论衬底材料和链路长度如何,由于ESD电路的高容性负载,低摆幅电路在能耗方面总是优于低摆幅电路。在没有ESD保护的情况下,玻璃和有机中间层的最高临界长度约为380 μm。为了进一步探讨2.5 d ic低摆幅信号的功耗降低限制,我们评估了典型的互连参数(如宽度和空间)对低摆幅通信能量效率的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy Efficiency of Low Swing Signaling for Emerging Interposer Technologies
Interconnects often constitute the major bottleneck in the design process of low power integrated circuits (IC). Although 2.5-D integration technologies support physical proximity, the dissipated power in the communication links remains high. In this work, the additional power savings for interposer-based interconnects enabled by low swing signaling is investigated. The energy consumed by a low swing scheme is, therefore, compared with a full swing solution and the critical length of the interconnect, above which the low swing solution starts to pay off, is determined for diverse interposer technologies. The energy consumption is compared for three different substrate materials, silicon, glass, and organic. Results indicate that the higher the load capacitance of the communication medium is, the greater the energy savings of the low swing circuit are. Specifically, in cases that electrostatic discharge (ESD) protection is required, the low swing circuit is always superior in terms of energy consumption due to the high capacitive load of the ESD circuit, regardless the substrate material and the link length. Without ESD protection, the highest critical length is about 380 μm for glass and organic interposers. To further explore the limits of power reduction from low swing signaling for 2.5-D ICs, the effect of typical interconnect parameters such as width and space on the energy efficiency of low swing communication is evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信