一个老化的弹性神经网络架构

S. Mozaffari, K. Gnawali, S. Tragoudas
{"title":"一个老化的弹性神经网络架构","authors":"S. Mozaffari, K. Gnawali, S. Tragoudas","doi":"10.1145/3232195.3232208","DOIUrl":null,"url":null,"abstract":"Recent artificial neural network architectures use memristors to store synaptic weights. The crossbar structure of memristors is used because of its dense structure and extreme parallelism. Transistor aging impacts their computational accuracy. An enhancement of the memristor-based neural network architecture is introduced using built-in current-based calibration circuit. It is shown experimentally that the proposed approach alleviates the cell aging effect.","PeriodicalId":401010,"journal":{"name":"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An Aging Resilient Neural Network Architecture\",\"authors\":\"S. Mozaffari, K. Gnawali, S. Tragoudas\",\"doi\":\"10.1145/3232195.3232208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent artificial neural network architectures use memristors to store synaptic weights. The crossbar structure of memristors is used because of its dense structure and extreme parallelism. Transistor aging impacts their computational accuracy. An enhancement of the memristor-based neural network architecture is introduced using built-in current-based calibration circuit. It is shown experimentally that the proposed approach alleviates the cell aging effect.\",\"PeriodicalId\":401010,\"journal\":{\"name\":\"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3232195.3232208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3232195.3232208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

最近的人工神经网络架构使用忆阻器来存储突触权值。由于记忆电阻器结构致密,且具有极高的平行度,因此采用了交叉杆结构。晶体管老化影响其计算精度。介绍了一种基于忆阻器的神经网络结构的改进,采用内置的基于电流的校准电路。实验结果表明,该方法能有效缓解细胞老化效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Aging Resilient Neural Network Architecture
Recent artificial neural network architectures use memristors to store synaptic weights. The crossbar structure of memristors is used because of its dense structure and extreme parallelism. Transistor aging impacts their computational accuracy. An enhancement of the memristor-based neural network architecture is introduced using built-in current-based calibration circuit. It is shown experimentally that the proposed approach alleviates the cell aging effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信