Neurochemistry international最新文献

筛选
英文 中文
Accelerated senescence exacerbates α-synucleinopathy in senescence-accelerated prone 8 mice via persistent neuroinflammation 加速衰老会通过持续的神经炎症加剧衰老加速易感基因 8 小鼠的α-突触核蛋白病变
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-11-23 DOI: 10.1016/j.neuint.2024.105906
Hiroshi Sakiyama , Kousuke Baba , Yasuyoshi Kimura , Kotaro Ogawa , Ujiakira Nishiike , Hideki Hayakawa , Miki Yoshida , Cesar Aguirre , Kensuke Ikenaka , Seiichi Nagano , Hideki Mochizuki
{"title":"Accelerated senescence exacerbates α-synucleinopathy in senescence-accelerated prone 8 mice via persistent neuroinflammation","authors":"Hiroshi Sakiyama ,&nbsp;Kousuke Baba ,&nbsp;Yasuyoshi Kimura ,&nbsp;Kotaro Ogawa ,&nbsp;Ujiakira Nishiike ,&nbsp;Hideki Hayakawa ,&nbsp;Miki Yoshida ,&nbsp;Cesar Aguirre ,&nbsp;Kensuke Ikenaka ,&nbsp;Seiichi Nagano ,&nbsp;Hideki Mochizuki","doi":"10.1016/j.neuint.2024.105906","DOIUrl":"10.1016/j.neuint.2024.105906","url":null,"abstract":"<div><div>Parkinson's disease (PD) is characterized by the formation of α-synuclein (α-syn) aggregates, which lead to dopaminergic neuronal degeneration. The incidence of PD increases with age, and senescence is considered to be a major risk factor for PD. In this study, we evaluated the effect of senescence on PD pathology using α-synuclein preformed fibrils (PFF) injection model in senescence-accelerated mice. We injected PFF into the substantia nigra (SN) of senescence-accelerated prone 8 (SAMP8) mice and senescence-accelerated resistant 1 (SAMR1) mice. At 24 weeks after injection of saline or PFF, we found that SAMP8 mice injected with PFF exhibited robust Lewy pathology and exacerbated degeneration of dopaminergic neurons in the SN compared to PFF-injected SAMR1 mice. We further observed an increase in the number of Iba1-positive cells in the brains of PFF-injected SAMP8 mice. RNA sequencing revealed that several genes related to neuroinflammation were upregulated in the brains of PFF-injected SAMP8 mice compared to SAMR1 mice. Inflammatory chemokine <em>C</em>C-chemokine ligand 21 (CCL21) was upregulated in PFF-injected SAMP8 mice and expressed in the glial cells of these mice. Our research indicates that accelerated senescence leads to persistent neuroinflammation, which plays an important role in the exacerbation of α-synucleinopathy.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"182 ","pages":"Article 105906"},"PeriodicalIF":4.4,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calcium balance through mutual orchestrated inter-organelle communication: A pleiotropic target for combating Alzheimer's disease 通过相互协调的细胞器间通信实现钙平衡:抗击阿尔茨海默病的多效应靶点
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-11-19 DOI: 10.1016/j.neuint.2024.105905
Muhammad Kamal Hossain , Han Jung Chae
{"title":"Calcium balance through mutual orchestrated inter-organelle communication: A pleiotropic target for combating Alzheimer's disease","authors":"Muhammad Kamal Hossain ,&nbsp;Han Jung Chae","doi":"10.1016/j.neuint.2024.105905","DOIUrl":"10.1016/j.neuint.2024.105905","url":null,"abstract":"<div><div>Dysfunctional intraneuronal organelles in Alzheimer's Disease (AD) propel aberrant calcium handling, triggering molecular miscommunication within organelles such as mitochondria, endoplasmic reticulum, and lysosomes. This disruption in organelle function not only impairs cellular homeostasis but also exacerbates neurodegenerative processes involving the accumulation of amyloid-β (Aβ) and hyperphosphorylated tau, amplifying the disease's vicious cycle. In this review, the concept of Mutual Orchestrated Inter-organelle Communication (MOIC) proposes potential therapeutic avenues for restoring Ca<sup>2+</sup> homeostasis in AD, offering a theoretical framework for developing disease-modifying treatments. The intricate nature of AD necessitates a shift towards combination therapies targeting MOIC-associated pathways, presenting a more effective approach than monotherapy.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"182 ","pages":"Article 105905"},"PeriodicalIF":4.4,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroprotective effects of nutraceuticals and natural products in traumatic brain injury 营养保健品和天然产品对创伤性脑损伤的神经保护作用。
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-11-16 DOI: 10.1016/j.neuint.2024.105904
K.M. Bhargavi , Niya Gowthami , G.K. Chetan , M.M. Srinivas Bharath
{"title":"Neuroprotective effects of nutraceuticals and natural products in traumatic brain injury","authors":"K.M. Bhargavi ,&nbsp;Niya Gowthami ,&nbsp;G.K. Chetan ,&nbsp;M.M. Srinivas Bharath","doi":"10.1016/j.neuint.2024.105904","DOIUrl":"10.1016/j.neuint.2024.105904","url":null,"abstract":"<div><div>Traumatic Brain Injury (TBI) is a global healthcare concern with considerable mortality and morbidity. Early diagnosis and timely treatment are critical for optimal clinical prognosis in TBI patients. Injury to the brain tissue following TBI is categorized into primary and secondary injury events, with the former being acute, while the latter evolves over a long period. Although surgical intervention is effective to treat primary injury, secondary injury events that could contribute to long term neurological deterioration, cognitive impairment and neurodegeneration do not have appropriate pharmacotherapy. To address this lacuna, studies based on modern medicine to explore novel drugs in TBI have met with limited success. This has led to focussed efforts to assess natural products capable of targeting multiple pathways in TBI. Complex natural mixtures and isolated phytochemicals capable of targeting redox mechanisms, neuroinflammation, mitochondrial dysfunction, cell death pathways and other specific targets etc. have been characterized. However, the field has met with certain limitations and challenges with inadequate clinical studies and trials being the most important concern. The current review provides an overview of the dietary factors, nutraceuticals, natural extracts, and phytochemicals that could be potentially applied in neuroprotection, TBI therapy and long-term management of cognitive symptoms and other neurological deficits.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"182 ","pages":"Article 105904"},"PeriodicalIF":4.4,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polygonatum sibiricum polysaccharides: A promising strategy in the treatment of neurodegenerative disease 何首乌多糖:治疗神经退行性疾病的有效策略。
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-11-13 DOI: 10.1016/j.neuint.2024.105902
Xue Jiang , Yumei Wang , Zhaochen Lin , Chao Li , Qian Wang , Junyan Zhang , Xiuhua Liu , Ziye Li , Chao Cui
{"title":"Polygonatum sibiricum polysaccharides: A promising strategy in the treatment of neurodegenerative disease","authors":"Xue Jiang ,&nbsp;Yumei Wang ,&nbsp;Zhaochen Lin ,&nbsp;Chao Li ,&nbsp;Qian Wang ,&nbsp;Junyan Zhang ,&nbsp;Xiuhua Liu ,&nbsp;Ziye Li ,&nbsp;Chao Cui","doi":"10.1016/j.neuint.2024.105902","DOIUrl":"10.1016/j.neuint.2024.105902","url":null,"abstract":"<div><div>Neurodegenerative diseases (NDDs), as a neurological disorder characterised by neuronal degeneration and death, are a serious threat to human health and have long attracted attention due to their complex pathogenesis and the ineffectiveness of therapeutic drugs. Existing studies have shown that <em>Polygonatum Sibiricum</em> polysaccharides (PSP) have immunoregulatory, antioxidant, anti-inflammatory and other pharmacological effects, and their neuroprotective effects have been demonstrated in several scientific studies. This paper reviews the main pharmacological effects and mechanisms of PSP in the protection and treatment of NDDs, to provide a reference for the clinical application and basic research of PSP in NDDs.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"181 ","pages":"Article 105902"},"PeriodicalIF":4.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The wnt/pyruvate kinase, muscle axis plays an essential role in the differentiation of mouse neuroblastoma cells Wnt/丙酮酸激酶、肌肉轴在小鼠神经母细胞瘤细胞的分化过程中起着至关重要的作用。
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-11-13 DOI: 10.1016/j.neuint.2024.105901
Cheng Lei , Jiaqi Wang , Xiaoyu Zhang , Xuemin Ge , Wei Zhao , Xinrong Li , Wei Jiang , Mingyu Ma , Zhenhai Wang , Shanshan Sun , Qingfei Kong , Hulun Li , Lili Mu , Jinghua Wang
{"title":"The wnt/pyruvate kinase, muscle axis plays an essential role in the differentiation of mouse neuroblastoma cells","authors":"Cheng Lei ,&nbsp;Jiaqi Wang ,&nbsp;Xiaoyu Zhang ,&nbsp;Xuemin Ge ,&nbsp;Wei Zhao ,&nbsp;Xinrong Li ,&nbsp;Wei Jiang ,&nbsp;Mingyu Ma ,&nbsp;Zhenhai Wang ,&nbsp;Shanshan Sun ,&nbsp;Qingfei Kong ,&nbsp;Hulun Li ,&nbsp;Lili Mu ,&nbsp;Jinghua Wang","doi":"10.1016/j.neuint.2024.105901","DOIUrl":"10.1016/j.neuint.2024.105901","url":null,"abstract":"<div><div>Neuronal differentiation and neurite growth are essential processes in nervous system development and are regulated by several factors. Although all-trans retinoic acid (ATRA) has been shown to mediate the differentiation of mouse neuroblastoma cells via the activation of several pathways, including Wnt/β-catenin signaling, the mechanism remains unclear. The pyruvate kinase, muscle (PKM) plays an important role in the glycolysis of neuroblastoma cells and regulates the Wnt signaling pathway in various cancer cells. In this study, we hypothesized that the Wnt/PKM axis regulates the differentiation of neuroblastoma cells (Neuro-2a and N1E-115). To test this hypothesis, we used inhibitors and activators of the Wnt/β-catenin and glycolytic pathways in ATRA-induced differentiated Neuro-2a and N1E-115 cells and established cell lines with silenced or a mutant replacement of Pkm. Western blot and qPCR showed that ATRA treatment activated the Wnt signaling pathway and inhibited PKM-mediated glycolysis. The oxygen consumption rate (indicating oxidative phosphorylation) significantly increased, whereas the extracellular acidification rate (indicating glycolysis) significantly decreased during differentiation; these effects were reversed upon PKM inhibition. The Wnt inhibitor ICG-001 and PKM activator ML-265 inhibited ATRA-induced Neuro-2a and N1E-115 differentiation, whereas RNA interference-mediated Pkm silencing promoted Neuro-2a and N1E-115 differentiation, which was reversed by PKM overexpression. Treatment with the Wnt activator kenpaullone promoted Neuro-2a and N1E-115 differentiation, which was reversed by ML-265 administration. These results indicate that Wnt/β-catenin signaling promotes Neuro-2a and N1E-115 differentiation by inhibiting PKM-mediated glycolysis during ATRA-induced differentiation. These findings may provide a new theoretical basis for the role of glycolysis in nerve differentiation.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"181 ","pages":"Article 105901"},"PeriodicalIF":4.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The developing mouse dopaminergic system: Cortical-subcortical shift in D1/D2 receptor balance and increasing regional differentiation 发育中的小鼠多巴胺能系统:皮层-皮层下 D1/D2 受体平衡的转变和区域分化的加剧
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-11-12 DOI: 10.1016/j.neuint.2024.105899
Ingvild E. Bjerke , Harry Carey , Jan G. Bjaalie , Trygve B. Leergaard , Jee Hyun Kim
{"title":"The developing mouse dopaminergic system: Cortical-subcortical shift in D1/D2 receptor balance and increasing regional differentiation","authors":"Ingvild E. Bjerke ,&nbsp;Harry Carey ,&nbsp;Jan G. Bjaalie ,&nbsp;Trygve B. Leergaard ,&nbsp;Jee Hyun Kim","doi":"10.1016/j.neuint.2024.105899","DOIUrl":"10.1016/j.neuint.2024.105899","url":null,"abstract":"<div><div>The dopaminergic system of the brain is involved in complex cognitive functioning and undergoes extensive reorganization during development. Yet, these changes are poorly characterized. We have quantified the density of dopamine 1- and 2-receptor (D1 and D2) positive cells across the forebrain of male and female mice at five developmental stages using validated transgenic mice expressing green fluorescent protein in cells producing D1 or D2 mRNA. After analyzing &gt;4,500 coronal brain images, a cortico-subcortical shift in D1/D2 balance was discovered, with increasing D1 dominance in cortical regions as a maturational pattern that occurs earlier in females. We describe postnatal trajectories of D1 and D2 cell densities across major brain regions and observe increasing regional differentiation of D1 densities through development. Our results provide the most comprehensive overview of the developing dopaminergic system to date, and an empirical foundation for further experimental and computational investigations of dopaminergic signaling.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"182 ","pages":"Article 105899"},"PeriodicalIF":4.4,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An overview of the relationship between inflammation and cognitive function in humans, molecular pathways and the impact of nutraceuticals 概述人类炎症与认知功能之间的关系、分子途径和营养保健品的影响。
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-11-08 DOI: 10.1016/j.neuint.2024.105900
Chusana Mekhora , Daniel J. Lamport , Jeremy P.E. Spencer
{"title":"An overview of the relationship between inflammation and cognitive function in humans, molecular pathways and the impact of nutraceuticals","authors":"Chusana Mekhora ,&nbsp;Daniel J. Lamport ,&nbsp;Jeremy P.E. Spencer","doi":"10.1016/j.neuint.2024.105900","DOIUrl":"10.1016/j.neuint.2024.105900","url":null,"abstract":"<div><div>Inflammation has been associated with cognitive decline, whether in the peripheral or central nervous systems. The primary mechanism involves the response of microglia, an immune cell in the brain, which generates pro-inflammatory mediators such as cytokines, chemokines, and adhesion molecules. The excessive production of pro-inflammatory mediators may accelerate the damage to neurons, contributing to the development of neurodegenerative diseases such as Alzheimer's disease, mild cognitive impairment, and vascular dementia, as well as a general decline in cognitive function. Various studies have supported the correlation between elevated pro-inflammatory mediators and a decline in cognitive function, particularly in aging and age-related neurodegenerative diseases. Moreover, this association has also been observed in other inflammatory-related conditions, including post-operative cognitive impairment, diabetes, stroke, obesity, and cancer. However, the interaction between inflammatory processes and cognitive function in humans remains unclear and varies according to different health conditions. Therefore, this review aims to consolidate and evaluate the available evidence from original studies as well as meta-analyses in order to provide a greater understanding of the inflammatory process in connection with cognitive function in humans. Furthermore, relevant biological cellular processes, putative inflammatory biomarkers, and the role of nutraceuticals on the interaction between cognitive performance and inflammatory status are outlined.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"181 ","pages":"Article 105900"},"PeriodicalIF":4.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impairment of neuromotor development and cognition associated with histopathological and neurochemical abnormalities in the cerebral cortex and striatum of glutaryl-CoA dehydrogenase deficient mice 谷氨酰-CoA脱氢酶缺乏症小鼠大脑皮层和纹状体中与组织病理学和神经化学异常相关的神经运动发育和认知能力受损。
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-11-08 DOI: 10.1016/j.neuint.2024.105898
Ediandra Tissot Castro , Rafael Teixeira Ribeiro , Andrey Vinicios Soares Carvalho , Diorlon Nunes Machado , Ângela Beatris Zemniaçak , Rafael Palavro , Sâmela de Azevedo Cunha , Tailine Quevedo Tavares , Diogo Onofre Gomes de Souza , Carlos Alexandre Netto , Guilhian Leipnitz , Alexandre Umpierrez Amaral , Moacir Wajner
{"title":"Impairment of neuromotor development and cognition associated with histopathological and neurochemical abnormalities in the cerebral cortex and striatum of glutaryl-CoA dehydrogenase deficient mice","authors":"Ediandra Tissot Castro ,&nbsp;Rafael Teixeira Ribeiro ,&nbsp;Andrey Vinicios Soares Carvalho ,&nbsp;Diorlon Nunes Machado ,&nbsp;Ângela Beatris Zemniaçak ,&nbsp;Rafael Palavro ,&nbsp;Sâmela de Azevedo Cunha ,&nbsp;Tailine Quevedo Tavares ,&nbsp;Diogo Onofre Gomes de Souza ,&nbsp;Carlos Alexandre Netto ,&nbsp;Guilhian Leipnitz ,&nbsp;Alexandre Umpierrez Amaral ,&nbsp;Moacir Wajner","doi":"10.1016/j.neuint.2024.105898","DOIUrl":"10.1016/j.neuint.2024.105898","url":null,"abstract":"<div><div>Patients with glutaric acidemia type I (GA I) manifest motor and intellectual disabilities whose pathogenesis has been so far poorly explored. Therefore, we evaluated neuromotor and cognitive abilities, as well as histopathological and immunohistochemical features in the cerebral cortex and striatum of glutaryl-CoA dehydrogenase (GCDH) deficient knockout mice (<em>Gcdh</em><sup><em>−/−</em></sup>), a well-recognized model of GA I. The effects of a single intracerebroventricular glutaric acid (GA) injection in one-day-old pups on the same neurobehavioral and histopathological/immunohistochemical endpoints were also investigated. Seven-day-old <em>Gcdh</em><sup><em>−/−</em></sup> mice presented altered gait, whereas those receiving a GA neonatal administration manifested other sensorimotor deficits, including an abnormal response to negative geotaxis, cliff aversion and righting reflex, and muscle tone impairment. Compared to the WT mice, adult <em>Gcdh−/−</em> mice exhibited motor impairment, evidenced by poor performance in the Rota-rod test. Furthermore, neonatal GA administration provoked long-standing short- and long-term memory impairment in adult <em>Gcdh</em><sup><em>−/−</em></sup> mice. Regarding the histopathological features, a significant increase in vacuoles and neurodegenerative cells was observed in both the cerebral cortex and striatum of 15- and 60-day-old Gcd<em>h−/−</em> mice and was more pronounced in mice injected with GA. Neuronal loss (decrease of NeuN staining) was also significantly increased in the cerebral cortex and striatum of <em>Gcdh</em><sup><em>−/−</em></sup> mice, particularly in those neonatally injected with GA. In contrast, immunohistochemistry of MBP, astrocytic proteins GFAP and S100B, and the microglial marker Iba1 was not changed in 60-day-old Gcdh−/− mice, suggesting no myelination disturbance, reactive astrogliosis, and microglia activation, respectively. These data highlight the neurotoxicity of GA and the importance of early treatment aiming to decrease GA accumulation at early stages of development to prevent brain damage and learning/memory disabilities in GA I patients.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"181 ","pages":"Article 105898"},"PeriodicalIF":4.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boron: An intriguing factor in retarding Alzheimer's progression 硼:延缓阿尔茨海默氏症进展的有趣因素
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-11-06 DOI: 10.1016/j.neuint.2024.105897
Ashmita Das , Vikas Rajput , Durlav Chowdhury , Rajesh Choudhary , Surendra H. Bodakhe
{"title":"Boron: An intriguing factor in retarding Alzheimer's progression","authors":"Ashmita Das ,&nbsp;Vikas Rajput ,&nbsp;Durlav Chowdhury ,&nbsp;Rajesh Choudhary ,&nbsp;Surendra H. Bodakhe","doi":"10.1016/j.neuint.2024.105897","DOIUrl":"10.1016/j.neuint.2024.105897","url":null,"abstract":"<div><div>Alzheimer's disease (AD) is a neurodegenerative disorder that is the fifth most common cause of mortality worldwide and the second most common cause of death in developed countries. The etiology of AD remains poorly understood; however, it is correlated with the accumulation of proteins in the brain, ultimately leading to cellular damage. Multiple factors, including genetic and environmental factors such as chemicals or food, have been linked to protein aggregation and cell death in AD. Boron is a vital micronutrient that is necessary for plant growth and is abundantly present in various fruits and nuts. Prior research has emphasized the importance of boron as a neuroprotective agent and necessary component for the preservation of brain health and function. However, the precise function of boron in the brain remains poorly understood. This review elucidates the molecular role of boron in the brain by examining existing information about its impact on neurodegenerative diseases and may provide a deeper understanding of the etiology of AD and, ultimately, lead to the development of novel approaches for its treatment.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"181 ","pages":"Article 105897"},"PeriodicalIF":4.4,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroprotective and anti-inflammatory effects of the RIPK3 inhibitor GSK872 in an MPTP-induced mouse model of Parkinson's disease RIPK3 抑制剂 GSK872 在 MPTP 诱导的帕金森病小鼠模型中的神经保护和抗炎作用。
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-11-02 DOI: 10.1016/j.neuint.2024.105896
Jin-Sun Park , Yea-Hyun Leem , Do-Yeon Kim , Jae-Min Park , Seong-Eun Kim , Hee-Sun Kim
{"title":"Neuroprotective and anti-inflammatory effects of the RIPK3 inhibitor GSK872 in an MPTP-induced mouse model of Parkinson's disease","authors":"Jin-Sun Park ,&nbsp;Yea-Hyun Leem ,&nbsp;Do-Yeon Kim ,&nbsp;Jae-Min Park ,&nbsp;Seong-Eun Kim ,&nbsp;Hee-Sun Kim","doi":"10.1016/j.neuint.2024.105896","DOIUrl":"10.1016/j.neuint.2024.105896","url":null,"abstract":"<div><div>Parkinson's disease (PD) is a neurodegenerative disorder triggered by the loss of dopaminergic neurons in the substantia nigra (SN). Recent studies have demonstrated that necroptosis is involved in dopaminergic neuronal cell death and the resulting neuroinflammation. During the process of necroptosis, a necrosome complex is formed consisting of the proteins receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL). Although the neuroprotective effects of the RIPK1-specific inhibitor necrostatin-1, as well as RIPK3 and MLKL knockout in mice, have been described, the effects of RIPK3 pharmacological inhibitors have not yet been reported in animal models of PD. In the present study, we investigated the neuroprotective effects of GSK872, a specific RIPK3 inhibitor, in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. GSK872 rescued MPTP-induced motor impairment and inhibited tyrosine hydroxylase-positive dopaminergic cell death in the SN and striatum. Additionally, GSK872 inhibited the MPTP-induced increase in the expression of <em>p</em>-RIPK3 and <em>p</em>-MLKL in both the dopaminergic neurons and microglia, as assessed by biochemical and histological analyses. GSK872 further inhibited microglial activation and the expression of inflammatory mediators including NLRP3, interleukin (IL)-1β, IL-6, tumor necrosis factor-alpha, and inducible nitric oxide synthase in the SN region of MPTP mice. Using in vitro experiments, we validated the effects of GSK872 on necroptosis in SH-SY5Y neuronal and BV2 microglial cells. Overall, our results suggest that GSK872 exerts neuroprotective and anti-inflammatory effects, and may thus have therapeutic potential for PD.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"181 ","pages":"Article 105896"},"PeriodicalIF":4.4,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142566765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信