Neurochemistry international最新文献

筛选
英文 中文
Brain endocannabinoid control of metabolic and non-metabolic feeding behaviors.
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-12-19 DOI: 10.1016/j.neuint.2024.105921
Maoxing Zhang, Qingyu Wang, Ying Wang
{"title":"Brain endocannabinoid control of metabolic and non-metabolic feeding behaviors.","authors":"Maoxing Zhang, Qingyu Wang, Ying Wang","doi":"10.1016/j.neuint.2024.105921","DOIUrl":"https://doi.org/10.1016/j.neuint.2024.105921","url":null,"abstract":"<p><p>The central endocannabinoid (eCB) system in brain shows a crucial role in the regulation of feeding behaviors, influencing both metabolic and non-metabolic mechanisms of appetite control, which has been paid much attention. Although there are already many review articles discussing eCB modulation of feeding behaviors, our paper attempts to summarize the recent advancements through synapses, circuits, and network in brain. Our focus is on the dual role of eCB signalling in regulating metabolic energy balance and hedonic reward-related feeding. In the context of metabolic regulation of feeding behaviors, eCBs affect the hypothalamic circuits that balance hunger and satiety through signal integration related to energy status and nutrient availability. Dysregulation of this system can contribute to metabolic disorders such as obesity and anorexia. In non-metabolic feeding, the eCB system influences the hedonic aspects of eating by modulating reward pathways, including the mesolimbic system and the olfactory bulb, critical for motivating food intake and processing sensory cues. This review also explores therapeutic strategies targeting the eCB system, including cannabinoid receptor antagonists and eCB hydrolase enzyme inhibitors, which hold promise for treating conditions associated with appetite dysregulation and eating disorders. By synthesizing recent findings, we aim to highlight the intricate mechanisms through which the eCB system affects feeding behavior and to propose future directions for research and therapeutic intervention in the realm of appetite control and eating disorders.</p>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":" ","pages":"105921"},"PeriodicalIF":4.4,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142870921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurosteroids and Translocator Protein (TSPO) in neuroinflammation.
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-12-15 DOI: 10.1016/j.neuint.2024.105916
Elisa Angeloni, Lorenzo Germelli, Barbara Costa, Claudia Martini, Eleonora Da Pozzo
{"title":"Neurosteroids and Translocator Protein (TSPO) in neuroinflammation.","authors":"Elisa Angeloni, Lorenzo Germelli, Barbara Costa, Claudia Martini, Eleonora Da Pozzo","doi":"10.1016/j.neuint.2024.105916","DOIUrl":"10.1016/j.neuint.2024.105916","url":null,"abstract":"<p><p>Neurosteroids have a crucial role in physiological intrinsic regulations of the Central Nervous System functions. They are derived from peripheral steroidogenic sources and from the de novo neurosteroidogenic capacity of brain cells. Significant alterations of neurosteroid levels have been frequently observed in neuroinflammation and neurodegenerative diseases. Such level fluctuations may be useful for both diagnosis and treatment of these pathological conditions. Beyond steroid administration, enhancing the endogenous production by Translocator Protein (TSPO) targeting has been proposed to restore these altered pathological levels. However, the neurosteroid quantification and the prediction of their final effects are often troublesome, sometimes controversial and context dependent, due to the complexity of neurosteroid biosynthetic pathway and to the low produced amounts. The aim of this review is to report recent advances, and technical limitations, in neurosteroid-related strategies against neuroinflammation.</p>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":" ","pages":"105916"},"PeriodicalIF":4.4,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VNS facilitates the neurological function recovery after ischemia/reperfusion injury by regulating the A1/A2 polarization of astrocytes through the NMU-NMUR2 pathway. VNS 通过 NMU-NMUR2 通路调节星形胶质细胞的 A1/A2 极化,从而促进缺血再灌注损伤后神经功能的恢复。
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-12-14 DOI: 10.1016/j.neuint.2024.105918
Xia Jiang, Wendi Yang, Gang Liu, Hao Tang, Renzi Zhang, Lina Zhang, Changqing Li, Sheng Li
{"title":"VNS facilitates the neurological function recovery after ischemia/reperfusion injury by regulating the A1/A2 polarization of astrocytes through the NMU-NMUR2 pathway.","authors":"Xia Jiang, Wendi Yang, Gang Liu, Hao Tang, Renzi Zhang, Lina Zhang, Changqing Li, Sheng Li","doi":"10.1016/j.neuint.2024.105918","DOIUrl":"https://doi.org/10.1016/j.neuint.2024.105918","url":null,"abstract":"<p><p>Stroke is the second leading cause of death worldwide. Although conventional treatments such as thrombolysis and mechanical thrombectomy are effective, their narrow therapeutic window limits long-term neurological recovery. Previous studies have shown that vagus nerve stimulation (VNS) enhances neurological recovery after ischemia/reperfusion (I/R) injury, and neuromedin U (NMU) has neuroprotective effects. This study used a mouse model of cerebral I/R injury to investigate the potential mechanisms of NMU in VNS-mediated neurological improvement. The study consisted of two parts: first, assessing the dynamic expression of NMU and NMUR2, which peaked on day 14 post-I/R. NMUR2 was primarily localized in astrocytes, suggesting that the NMU-NMUR2 signaling pathway plays an important role in astrocyte regulation. Next, interventions with VNS, NMU, and R-PSOP+VNS were conducted to evaluate the role of this pathway in VNS-mediated recovery. The results showed that VNS significantly upregulated NMU and NMUR2 expression, which was blocked by the NMUR2 antagonist R-PSOP. VNS and NMU treatment increased the proportion of A2 astrocytes, reduced A1 astrocytes, and enhanced the expression of VEGF and BDNF, all of which were also blocked by R-PSOP. These findings indicate that the \"VNS-NMU-NMUR2-astrocyte A1/A2 polarization-VEGF/BDNF pathway\" plays a crucial role in promoting neurovascular remodeling, axonal and dendritic regeneration, and synaptic plasticity, thereby contributing to functional recovery.</p>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":" ","pages":"105918"},"PeriodicalIF":4.4,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of PI3Kγ in the polarization, migration, and phagocytosis of microglia.
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-12-13 DOI: 10.1016/j.neuint.2024.105917
Xinghua Liang, Yuan Hu, Xinyue Li, Xi Xu, Zhonglan Chen, Yalin Han, Yingying Han, Guangping Lang
{"title":"Role of PI3Kγ in the polarization, migration, and phagocytosis of microglia.","authors":"Xinghua Liang, Yuan Hu, Xinyue Li, Xi Xu, Zhonglan Chen, Yalin Han, Yingying Han, Guangping Lang","doi":"10.1016/j.neuint.2024.105917","DOIUrl":"10.1016/j.neuint.2024.105917","url":null,"abstract":"<p><p>Phosphoinositide 3-kinase γ (PI3Kγ) is a signaling protein that is constitutively expressed in immune competent cells and plays a crucial role in cell proliferation, apoptosis, migration, deformation, and immunology. Several studies have shown that high expression of PI3Kγ can inhibit the occurrence of inflammation in microglia while also regulating the polarization of microglia to inhibit inflammation and enhance microglial migration and phagocytosis. It is well known that the regulation of microglial polarization, migration, and phagocytosis is key to the treatment of most neurodegenerative diseases. Therefore, in this article, we review the important regulatory role of PI3Kγ in microglia to provide a basis for the treatment of neurodegenerative diseases.</p>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":" ","pages":"105917"},"PeriodicalIF":4.4,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurometabolite and cognitive changes in hypothyroid patients in response to treatment: In-vivo 1H MRS study. 甲状腺功能减退症患者的神经代谢物和认知变化对治疗的反应:体内 1H MRS 研究。
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-12-09 DOI: 10.1016/j.neuint.2024.105915
Mukesh Kumar, Sadhana Singh, Poonam Rana, Maria D'souza, S Senthil Kumaran, Tarun Sekhri, Subash Khushu
{"title":"Neurometabolite and cognitive changes in hypothyroid patients in response to treatment: In-vivo <sup>1</sup>H MRS study.","authors":"Mukesh Kumar, Sadhana Singh, Poonam Rana, Maria D'souza, S Senthil Kumaran, Tarun Sekhri, Subash Khushu","doi":"10.1016/j.neuint.2024.105915","DOIUrl":"10.1016/j.neuint.2024.105915","url":null,"abstract":"<p><p>The disturbances in thyroid hormones lead to altered brain metabolism, function, and cognition. Neuroimaging studies have shown structural and functional changes in hypothyroidism. Present study investigates the neuro-metabolite changes in dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex (PPC) and associated decline cognitive function in hypothyroid patients before and after thyroxine treatment. We performed neuropsychological test and <sup>1</sup>H MRS in hypothyroid patients (n = 25) and controls (n = 30). In addition, follow-up data was also collected from 19 patients treated with levo-thyroxine for 32 weeks. The concentration of the neurometabolites were calculated using LCModel. MRS data were analyzed using analysis of covariance (ANCOVA), with age and gender as covariates. A paired t-test was conducted to compare the baseline hypothyroid with the follow-up. Partial correlations were utilised to assess possible associations between neuropsychological scores and neurometabolites with age and gender as covariates. Spearman correlation was performed between thyroid hormone levels and neurometabolites. Hypothyroid patients showed an impairment in delayed recall, immediate recall of semantic, visual retention, recognition of objects memory, attention, and motor function at baseline, which improved significantly after thyroxine therapy. At baseline, patients with hypothyroidism exhibited significantly higher levels of choline compounds (GPC + PCh) [Cho]. No significant normalization of Cho levels was observed, despite achieving euthyroidism with thyroxine treatment. Cho levels showed a positive correlation with TSH in PPC and a negative correlation with T4 in DLPFC and PCC. Cho levels also showed negative correlations with delayed recall, immediate recall of semantic, visual retention memory and MMSE scores. The MRS findings show increased levels of Cho in hypothyroid patients compared to healthy controls. These Cho levels are not reversible within 32 weeks of treatment, suggesting that a longer follow-up may be needed to see if levels can be normalized.</p>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":" ","pages":"105915"},"PeriodicalIF":4.4,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen restores central tryptophan and metabolite levels and maintains mitochondrial homeostasis to protect rats from chronic mild unpredictable stress damage.
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-12-07 DOI: 10.1016/j.neuint.2024.105914
Jiaxin Li, Gaimei Hao, Yupeng Yan, Ming Li, Gaifen Li, Zhengmin Lu, Zhibo Sun, Yanjing Chen, Haixia Liu, Yukun Zhao, Meng Wu, Xiangxin Bao, Yong Wang, Yubo Li
{"title":"Hydrogen restores central tryptophan and metabolite levels and maintains mitochondrial homeostasis to protect rats from chronic mild unpredictable stress damage.","authors":"Jiaxin Li, Gaimei Hao, Yupeng Yan, Ming Li, Gaifen Li, Zhengmin Lu, Zhibo Sun, Yanjing Chen, Haixia Liu, Yukun Zhao, Meng Wu, Xiangxin Bao, Yong Wang, Yubo Li","doi":"10.1016/j.neuint.2024.105914","DOIUrl":"10.1016/j.neuint.2024.105914","url":null,"abstract":"<p><strong>Background and purpose: </strong>The field of hydrogen medicine has garnered extensive attention since Professor Ohsawa established that low concentrations of hydrogen (2%-4%) exert antioxidant effects. The present study aimed to evaluate the therapeutic effect of molecular hydrogen in a CUMS rat model.</p><p><strong>Methods: </strong>A total of 40 SD rats were randomly divided into a control group, a model group, a hydrogen group, and a positive drug group. Four weeks post-modeling, hydrogen inhalation and other treatments were administered. Behavioral, biochemical, and immunohistochemical evaluations were performed after treatment.</p><p><strong>Results: </strong>Hydrogen inhalation alleviated depressive behavior and hippocampal neuronal damage in CUMS rats, as well as restored the levels of neurotransmitters, inflammatory factors, and oxidative stress. Moreover, it maintained mitochondrial homeostasis and up-regulated the expression of PGC-1α, PINK1, and Parkin.</p><p><strong>Conclusions: </strong>The results collectively indicated that hydrogen significantly attenuated CUMS-induced depressive-like behavior and monoamine neurotransmitter deficiency, as well as protected the brain from oxidative stress and inflammatory damage and effectively preserved mitochondrial homeostasis.</p>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":" ","pages":"105914"},"PeriodicalIF":4.4,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PDE4D inhibitors: Opening a new era of PET diagnostics for Alzheimer's disease.
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-12-06 DOI: 10.1016/j.neuint.2024.105903
Luyang Shi, Xue Wang, Hongzong Si, Wangdi Song
{"title":"PDE4D inhibitors: Opening a new era of PET diagnostics for Alzheimer's disease.","authors":"Luyang Shi, Xue Wang, Hongzong Si, Wangdi Song","doi":"10.1016/j.neuint.2024.105903","DOIUrl":"10.1016/j.neuint.2024.105903","url":null,"abstract":"<p><p>As the incidence of Alzheimer's disease (AD) continues to rise, the need for an effective PET radiotracer to facilitate early diagnosis has become more pressing than ever before in modern medicine. Phosphodiesterase (PDE) is closely related to cognitive impairment and neuroinflammatory processes in AD. Current research progress shows that specific PDE4D inhibitors radioligands can bind specifically to the PDE4D enzyme in the brain, thereby showing pathology-related signal enhancement in AD animal models, indicating the potential of these ligands as effective radiotracers. At the same time, we need to pay attention to the important role computer aided drug design (CADD) plays in advancing AD drug design and PET imaging. Future research will verify the potential of these ligands in clinical applications through computer simulation techniques, providing patients with timely intervention and treatment, which is of great significance.</p>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":" ","pages":"105903"},"PeriodicalIF":4.4,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leptin deficiency leads to nerve degeneration and impairs axon remyelination by inducing Schwann cell apoptosis and demyelination in type 2 diabetic peripheral neuropathy in rats
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-11-26 DOI: 10.1016/j.neuint.2024.105908
Yuan-Shuo Hsueh , Szu-Han Chen , Wan-Ling Tseng , Sheng-Che Lin , De-Quan Chen , Chih-Chung Huang , Yuan-Yu Hsueh
{"title":"Leptin deficiency leads to nerve degeneration and impairs axon remyelination by inducing Schwann cell apoptosis and demyelination in type 2 diabetic peripheral neuropathy in rats","authors":"Yuan-Shuo Hsueh ,&nbsp;Szu-Han Chen ,&nbsp;Wan-Ling Tseng ,&nbsp;Sheng-Che Lin ,&nbsp;De-Quan Chen ,&nbsp;Chih-Chung Huang ,&nbsp;Yuan-Yu Hsueh","doi":"10.1016/j.neuint.2024.105908","DOIUrl":"10.1016/j.neuint.2024.105908","url":null,"abstract":"<div><div>Diabetic peripheral neuropathy, characterized by symptoms such as paresthesia, neuropathic pain, and potential lower limb amputation, poses significant clinical management challenges. Recent studies suggest that chronic hyperglycemia-induced Schwann cells (SCs) apoptosis contributes to neurodegeneration and impaired nerve regeneration, but the detailed mechanisms are still unknown. Our study investigated a mixed-sex type 2 diabetes mellitus (T2DM) rat model using leptin knockout (KO) to simulate obesity and diabetes-related conditions. Through extensive assessments, including mechanical allodynia, electrophysiology, and microcirculation analyses, along with myelin degradation studies in KO versus wild-type rats, we focused on apoptosis, autophagy, and SCs dedifferentiation in the sciatic nerve and examined nerve regeneration in KO rats. KO rats exhibited notable reductions in mechanical withdrawal force, prolonged latency, decreased compound muscle action potential (CMAP) amplitude, reduced microcirculation, myelin sheath damage, and increases in apoptosis, autophagy, and SCs dedifferentiation. Moreover, leptin KO was found to impair peripheral nerve regeneration postinjury, as indicated by reduced muscle weight, lower CMAP amplitude, extended latency, and decreased remyelination and SCs density. These findings underscore the effectiveness of the T2DM rat model in clarifying the impact of leptin KO on SCs apoptosis, dedifferentiation, and demyelination, providing valuable insights into new therapeutic avenues for treating T2DM-induced peripheral neuropathy.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"182 ","pages":"Article 105908"},"PeriodicalIF":4.4,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142745657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Striatum-enriched protein, arginase 2 localizes to medium spiny neurons and controls striatal metabolic profile 纹状体富集蛋白精氨酸酶 2 定位于中刺神经元并控制纹状体的新陈代谢。
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-11-23 DOI: 10.1016/j.neuint.2024.105907
Martyna Nalepa , Beata Toczyłowska , Aleksandra Owczarek , Aleksandra Skweres , Elżbieta Ziemińska , Michał Węgrzynowicz
{"title":"Striatum-enriched protein, arginase 2 localizes to medium spiny neurons and controls striatal metabolic profile","authors":"Martyna Nalepa ,&nbsp;Beata Toczyłowska ,&nbsp;Aleksandra Owczarek ,&nbsp;Aleksandra Skweres ,&nbsp;Elżbieta Ziemińska ,&nbsp;Michał Węgrzynowicz","doi":"10.1016/j.neuint.2024.105907","DOIUrl":"10.1016/j.neuint.2024.105907","url":null,"abstract":"<div><div>Arginase 2 (Arg2) is the predominant arginase isoenzyme in the brain, however its distribution appears to be limited to selected, region-specific subpopulations of cells. Although striatum is highly enriched with Arg2, precise localization and function of striatal Arg2 have never been studied. Here, we confirm that Arg2 is the only arginase isoenzyme in the striatum, and, using genetic model of total Arg2 loss, we show that Arg2 in this region is fully responsible for arginase catalytic activity, and its loss doesn't induce compensatory activation of Arg1. We exhibit that Arg2 is present in medium spiny neurons (MSNs), striatum-specific projecting neurons, where it localizes in soma and neuronal processes, and is absent in astrocytes or microglia. Finally, analysis of NMR spectroscopy-measured metabolic profiles of striata of Arg2-null mice enabled to recognize two metabolites (NADH and malonic acid) to be significantly altered compared to control animals. Multivariate comparison of the data using orthogonal projections to latent structures discriminant analysis, allowed for discrimination between control and Arg2-null mice and identified metabolites that contributed the most to this between-group dissimilarity. Our study reveals for the first time the localization of Arg2 in MSNs and demonstrates significant role of this enzyme in regulating striatal metabolism. These findings may be especially interesting in the context of Huntington's disease (HD), a disorder that specifically affects MSNs and in which, with the use of mouse models, the onset of pathological phenotypes was recently shown to be preceded by progressive impairment of striatal Arg2, a phenomenon of an unknown significance for disease pathogenesis.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"182 ","pages":"Article 105907"},"PeriodicalIF":4.4,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142708539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accelerated senescence exacerbates α-synucleinopathy in senescence-accelerated prone 8 mice via persistent neuroinflammation 加速衰老会通过持续的神经炎症加剧衰老加速易感基因 8 小鼠的α-突触核蛋白病变
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-11-23 DOI: 10.1016/j.neuint.2024.105906
Hiroshi Sakiyama , Kousuke Baba , Yasuyoshi Kimura , Kotaro Ogawa , Ujiakira Nishiike , Hideki Hayakawa , Miki Yoshida , Cesar Aguirre , Kensuke Ikenaka , Seiichi Nagano , Hideki Mochizuki
{"title":"Accelerated senescence exacerbates α-synucleinopathy in senescence-accelerated prone 8 mice via persistent neuroinflammation","authors":"Hiroshi Sakiyama ,&nbsp;Kousuke Baba ,&nbsp;Yasuyoshi Kimura ,&nbsp;Kotaro Ogawa ,&nbsp;Ujiakira Nishiike ,&nbsp;Hideki Hayakawa ,&nbsp;Miki Yoshida ,&nbsp;Cesar Aguirre ,&nbsp;Kensuke Ikenaka ,&nbsp;Seiichi Nagano ,&nbsp;Hideki Mochizuki","doi":"10.1016/j.neuint.2024.105906","DOIUrl":"10.1016/j.neuint.2024.105906","url":null,"abstract":"<div><div>Parkinson's disease (PD) is characterized by the formation of α-synuclein (α-syn) aggregates, which lead to dopaminergic neuronal degeneration. The incidence of PD increases with age, and senescence is considered to be a major risk factor for PD. In this study, we evaluated the effect of senescence on PD pathology using α-synuclein preformed fibrils (PFF) injection model in senescence-accelerated mice. We injected PFF into the substantia nigra (SN) of senescence-accelerated prone 8 (SAMP8) mice and senescence-accelerated resistant 1 (SAMR1) mice. At 24 weeks after injection of saline or PFF, we found that SAMP8 mice injected with PFF exhibited robust Lewy pathology and exacerbated degeneration of dopaminergic neurons in the SN compared to PFF-injected SAMR1 mice. We further observed an increase in the number of Iba1-positive cells in the brains of PFF-injected SAMP8 mice. RNA sequencing revealed that several genes related to neuroinflammation were upregulated in the brains of PFF-injected SAMP8 mice compared to SAMR1 mice. Inflammatory chemokine <em>C</em>C-chemokine ligand 21 (CCL21) was upregulated in PFF-injected SAMP8 mice and expressed in the glial cells of these mice. Our research indicates that accelerated senescence leads to persistent neuroinflammation, which plays an important role in the exacerbation of α-synucleinopathy.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"182 ","pages":"Article 105906"},"PeriodicalIF":4.4,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信