Neurochemistry international最新文献

筛选
英文 中文
Statins ameliorate oxaliplatin- and paclitaxel-induced peripheral neuropathy via glutathione S-transferase 他汀类药物通过谷胱甘肽-S-转移酶改善奥沙利铂和紫杉醇诱发的周围神经病变
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-09-21 DOI: 10.1016/j.neuint.2024.105863
Fuka Aizawa , Haruna Kajimoto , Ami Okabayashi , Daishi Moriyama , Kenta Yagi , Shimon Takahashi , Yuhei Sonoda , Takahiro Shibata , Mitsuhiro Goda , Takahiro Niimura , Yuki Izawa-Ishizawa , Hirofumi Hamano , Kei Kawada , Yoshito Zamami , Keisuke Ishizawa
{"title":"Statins ameliorate oxaliplatin- and paclitaxel-induced peripheral neuropathy via glutathione S-transferase","authors":"Fuka Aizawa ,&nbsp;Haruna Kajimoto ,&nbsp;Ami Okabayashi ,&nbsp;Daishi Moriyama ,&nbsp;Kenta Yagi ,&nbsp;Shimon Takahashi ,&nbsp;Yuhei Sonoda ,&nbsp;Takahiro Shibata ,&nbsp;Mitsuhiro Goda ,&nbsp;Takahiro Niimura ,&nbsp;Yuki Izawa-Ishizawa ,&nbsp;Hirofumi Hamano ,&nbsp;Kei Kawada ,&nbsp;Yoshito Zamami ,&nbsp;Keisuke Ishizawa","doi":"10.1016/j.neuint.2024.105863","DOIUrl":"10.1016/j.neuint.2024.105863","url":null,"abstract":"<div><div>Some therapeutic agents have been found to have effects beyond their primary indications. Peripheral neuropathy, a common side effect of chemotherapy, remains inadequately treated. Identifying additional properties of existing medications could thus uncover novel therapeutic avenues. Previous studies have identified an additional effect of simvastatin in reducing neuropathy; however, the mechanism underlying this effect remains unclear. We investigated the novel effects of statins on chemotherapy-induced peripheral neuropathy in mice. Mice treated with oxaliplatin or paclitaxel did not show exacerbation or improvement in cold sensations upon acetone testing with statin administration. However, concurrent oral statin treatment mitigated the nociceptive response to mechanical stimuli induced by each anti-tumor agent. Co-administration of a glutathione S-transferase inhibitor, which modulates redox reactions, abolished the ameliorative effect of statins on mechanical nociceptive behavior. Additionally, the glutathione S-transferase inhibitor did not affect normal sensory perception or impair the anti-tumor effect of chemotherapy agents. A search for GST-associated molecules and pathways using artificial intelligence revealed that GST regulates inflammatory cytokines as a regulatory or causative gene. Our findings suggest that statins have class effects that ameliorate cytotoxic anti-cancer drug-induced mechanical allodynia via GST pathway activation.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"180 ","pages":"Article 105863"},"PeriodicalIF":4.4,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Mandukparni (Centella asiatica Linn Urban) in neurological disorders: Evidence from ethnopharmacology and clinical studies to network enrichment analysis Mandukparni (Centella asiatica Linn Urban) 在神经系统疾病中的作用:从民族药理学和临床研究到网络富集分析的证据。
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-09-20 DOI: 10.1016/j.neuint.2024.105865
Ruchi Sharma , Subhadip Banerjee , Rohit Sharma
{"title":"Role of Mandukparni (Centella asiatica Linn Urban) in neurological disorders: Evidence from ethnopharmacology and clinical studies to network enrichment analysis","authors":"Ruchi Sharma ,&nbsp;Subhadip Banerjee ,&nbsp;Rohit Sharma","doi":"10.1016/j.neuint.2024.105865","DOIUrl":"10.1016/j.neuint.2024.105865","url":null,"abstract":"<div><div><em>Centella asiatica Linn</em> Urban (<em>C. asiatica</em>), aka <em>Mandukparni</em>, is one of the flagship herbs used in traditional medicines to effectively manage neurological problems. Although this plant has a wealth of comprehensive preclinical pharmacological profiles, further clinical research and execution of its molecular mode of action are still required. We searched electronic databases (Google Scholar, SciFinder, MEDLINE, Scopus, EMBASE, Science Direct, and PubMed) using relevant key words to retrieve information pertaining to <em>C. asiatica</em> till June 2023 and performed network pharmacology to understand the mechanism related to their neurobiological roles. This study extensively analyses its pharmacological properties, nutritional profile, ethnomedical uses, safety, and mechanistic role in treating neurological and neurodegenerative disorders. Additionally, a network pharmacology study was performed which suggests that its phytomolecules are involved in different neuroactive ligand-receptor pathways, glial cell differentiation, gliogenesis, and astrocyte differentiation. Hopefully, this report will lead to a paradigm shift in medical practice, research, and the creation of phytopharmaceuticals derived from <em>C. asiatica</em> that target the central nervous system.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"180 ","pages":"Article 105865"},"PeriodicalIF":4.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cycloleucine induces neural tube defects by reducing Pax3 expression and impairing the balance of proliferation and apoptosis in early neurulation 环亮氨酸会降低 Pax3 的表达,并损害早期神经形成过程中增殖和凋亡的平衡,从而诱发神经管缺陷。
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-09-20 DOI: 10.1016/j.neuint.2024.105861
Li Zhang , Dandan Li , Yurong Liu , Xiaona Zhang , Kaixin Wei , Xiaorong Zhao , Huijing Ma , Bo Niu , Rui Cao , Xiuwei Wang
{"title":"Cycloleucine induces neural tube defects by reducing Pax3 expression and impairing the balance of proliferation and apoptosis in early neurulation","authors":"Li Zhang ,&nbsp;Dandan Li ,&nbsp;Yurong Liu ,&nbsp;Xiaona Zhang ,&nbsp;Kaixin Wei ,&nbsp;Xiaorong Zhao ,&nbsp;Huijing Ma ,&nbsp;Bo Niu ,&nbsp;Rui Cao ,&nbsp;Xiuwei Wang","doi":"10.1016/j.neuint.2024.105861","DOIUrl":"10.1016/j.neuint.2024.105861","url":null,"abstract":"<div><div>S-adenosylmethionine (SAM) plays a critical role in the development of neural tube defects (NTDs). Studies have shown that the paired box 3 (<em>Pax3</em>) gene is involved in neural tube closure. However, the exact mechanism between <em>Pax3</em> and NTDs induced by SAM deficiency remains unclear. Here, The NTD mouse model was induced using cycloleucine (CL), an inhibitor of SAM biosynthesis, to determine the effect of <em>Pax3</em> on NTDs. The effect of CL on NTD occurrence was assessed by 5-ethynyl-2′-deoxyuridine (EdU) staining, immunohistochemistry, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), and Western blot in NTD embryonic brain tissues and immortalized hippocampal neuron cells (HT-22). A high incidence of NTDs was observed when CL was administered at a dose of 200 mg/kg body weight. The levels of SAM and <em>Pax3</em> were significantly reduced in NTD embryonic brain tissues and HT-22 cells after CL exposure. Decreased proliferation and excessive apoptosis were observed in neuroepithelial cells of NTD embryos and HT-22 cells under SAM deficiency, but these effects were reversed by overexpression of <em>Pax3</em>. These results suggest that decreased expression of <em>Pax3</em> impairs the dynamic balance between cellular proliferation and apoptosis, contributing to NTDs induced by SAM deficiency, which would provide new insights for clarifying the underlying mechanism of NTDs.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"180 ","pages":"Article 105861"},"PeriodicalIF":4.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shh regulates M2 microglial polarization and fibrotic scar formation after ischemic stroke Shh 可调节缺血性中风后 M2 小胶质细胞的极化和纤维化瘢痕的形成。
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-09-20 DOI: 10.1016/j.neuint.2024.105862
Qinghuan Yang, Peiran Jiang, Hao Tang, Jun Wen, Li Zhou, Yong Zhao, Ling Wang, Jiani Wang, Qin Yang
{"title":"Shh regulates M2 microglial polarization and fibrotic scar formation after ischemic stroke","authors":"Qinghuan Yang,&nbsp;Peiran Jiang,&nbsp;Hao Tang,&nbsp;Jun Wen,&nbsp;Li Zhou,&nbsp;Yong Zhao,&nbsp;Ling Wang,&nbsp;Jiani Wang,&nbsp;Qin Yang","doi":"10.1016/j.neuint.2024.105862","DOIUrl":"10.1016/j.neuint.2024.105862","url":null,"abstract":"<div><h3>Background</h3><div>Fibrotic scar formation is a critical pathological change impacting tissue reconstruction and functional recovery after ischemic stroke. The regulatory mechanisms behind fibrotic scarring in the central nervous system (CNS) remain largely unknown. While macrophages are known to play a role in fibrotic scar formation in peripheral tissues, the involvement of microglia, the resident immune cells of the CNS, in CNS fibrosis requires further exploration. The Sonic Hedgehog (Shh) signaling pathway, pivotal in embryonic development and tissue regeneration, is also crucial in modulating fibrosis in peripheral tissues. However, the impact and regulatory mechanisms of Shh on fibrotic scar formation post-ischemic stroke have not been thoroughly investigated.</div></div><div><h3>Methods</h3><div>This study explores whether Shh can regulate fibrotic scar formation post-ischemic stroke and its underlying mechanisms through in vivo and in vitro manipulation of Shh expression.</div></div><div><h3>Results</h3><div>Our results showed that Shh expression was upregulated in the serum of acute ischemic stroke patients, as well as in the serum, CSF, and ischemic regions of MCAO/R mice. Moreover, the upregulation of Shh expression was positively correlated with fibrotic scar formation and M2 microglial polarization. Shh knockdown inhibited fibrotic scar formation and M2 microglial polarization while aggravating neurological deficits in MCAO/R mice. In vitro, adenoviral knockdown or Smoothened Agonist (SAG) activation of Shh expression in BV2 cells following OGD/R regulated their polarization and influenced the expression of TGFβ1 and PDGFA, subsequently affecting fibroblast activation.</div></div><div><h3>Conclusion</h3><div>These results suggest that Shh regulates M2 microglial polarization and fibrotic scar formation after cerebral ischemia.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"180 ","pages":"Article 105862"},"PeriodicalIF":4.4,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GABA, epigallocatechin gallate, tea, and the gut-brain axis GABA、表没食子儿茶素没食子酸酯、茶和肠脑轴。
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-09-18 DOI: 10.1016/j.neuint.2024.105860
Tina Hinton, Graham A.R. Johnston
{"title":"GABA, epigallocatechin gallate, tea, and the gut-brain axis","authors":"Tina Hinton,&nbsp;Graham A.R. Johnston","doi":"10.1016/j.neuint.2024.105860","DOIUrl":"10.1016/j.neuint.2024.105860","url":null,"abstract":"<div><div>Our investigations on GABA-enriched tea and the reduction of stress in a student cohort have shown that more than just GABA may be involved. The effects of other constituents that are changed in the enrichment process are likely to be important. We have concentrated on GABA as well as the major tea flavonoid, epigallocatechin gallate. While this flavonoid is known to get to the brain on oral administration, it is far from clear that GABA does the same. GABA may act primarily on the gut and influence brain function via the gut-brain axis and the gut microbiome. In addition, there may be a microbiome in the brain that has a role. The situation is complex and not clearly understood. Mixtures of bioactive compounds are always difficult to investigate, but even the precise mechanisms of how pure oral GABA acts as a neuro-nutraceutical is unclear.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"180 ","pages":"Article 105860"},"PeriodicalIF":4.4,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carotenoids modulate antioxidant pathways in In vitro models of Parkinson's disease: A comprehensive scoping review 类胡萝卜素调节帕金森病体外模型中的抗氧化途径:综合范围综述
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-09-16 DOI: 10.1016/j.neuint.2024.105857
Han Ting Guo , Zi Xin Lee , Kasthuri Bai Magalingam , Ammu Kutty Radhakrishnan , Saatheeyavaane Bhuvanendran
{"title":"Carotenoids modulate antioxidant pathways in In vitro models of Parkinson's disease: A comprehensive scoping review","authors":"Han Ting Guo ,&nbsp;Zi Xin Lee ,&nbsp;Kasthuri Bai Magalingam ,&nbsp;Ammu Kutty Radhakrishnan ,&nbsp;Saatheeyavaane Bhuvanendran","doi":"10.1016/j.neuint.2024.105857","DOIUrl":"10.1016/j.neuint.2024.105857","url":null,"abstract":"<div><p>Parkinson's disease (PD) is the second most common neurodegenerative disease, and it has affected the living quality of elderly people significantly. PD is characterised by the accumulation of α-Synuclein and progressive loss of dopaminergic neurons at the substantia nigra pars compacta. In the pathogenesis of Parkinson's disease, α-Synuclein, oxidative stress, and electron transport chain (ETC) are the three main factors that contribute to the production of reactive oxygen species (ROS). Currently, there is no commercial disease-modifying agent available for PD; the first-line treatment, Levodopa (<span>l</span>-DOPA), could only relieve the symptoms of PD, with many side effects. Carotenoids, which encompass red, orange, and yellow pigments found in nature and contribute to the colouration of plants, have been associated with various health benefits, including anti-cancer and neuroprotective effects due to their antioxidant properties. This scoping review delves into the impact and underlying mechanisms of carotenoids on cell-based models of neurodegenerative diseases.</p></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"180 ","pages":"Article 105857"},"PeriodicalIF":4.4,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0197018624001840/pdfft?md5=0d1cbc28753d75c4219ae493cc311ee9&pid=1-s2.0-S0197018624001840-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “HPOB, an HDAC6 inhibitor, attenuates corticosterone-induced injury in rat adrenal pheochromocytoma PC12 cells by inhibiting mitochondrial GR translocation and the intrinsic apoptosis pathway’[Neurochemistry International 99 (2016) 239–251] HPOB,一种HDAC6抑制剂,通过抑制线粒体GR转位和内在凋亡途径减轻皮质酮诱导的大鼠肾上腺嗜铬细胞瘤PC12细胞损伤'[Neurohemistry International 99 (2016) 239-251]的更正。
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-09-14 DOI: 10.1016/j.neuint.2024.105856
Zong-yang Li , Qing-zhong Li , Lei Chen , Bao-dong Chen , Ce Zhang , Xiang Wang , Wei-ping Li
{"title":"Corrigendum to “HPOB, an HDAC6 inhibitor, attenuates corticosterone-induced injury in rat adrenal pheochromocytoma PC12 cells by inhibiting mitochondrial GR translocation and the intrinsic apoptosis pathway’[Neurochemistry International 99 (2016) 239–251]","authors":"Zong-yang Li ,&nbsp;Qing-zhong Li ,&nbsp;Lei Chen ,&nbsp;Bao-dong Chen ,&nbsp;Ce Zhang ,&nbsp;Xiang Wang ,&nbsp;Wei-ping Li","doi":"10.1016/j.neuint.2024.105856","DOIUrl":"10.1016/j.neuint.2024.105856","url":null,"abstract":"","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"180 ","pages":"Article 105856"},"PeriodicalIF":4.4,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soy lysolecithin prevents hypertension and cognitive impairment induced in mice by high salt intake by inhibiting intestinal inflammation 大豆卵磷脂通过抑制肠道炎症预防高盐摄入诱发的小鼠高血压和认知障碍
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-09-12 DOI: 10.1016/j.neuint.2024.105858
Hisayoshi Kubota , Kazuo Kunisawa , Masaya Hasegawa , Hitomi Kurahashi , Kazuhiro Kagotani , Yuki Fujimoto , Akihito Hayashi , Ryoji Sono , Takehiko Tsuji , Kuniaki Saito , Toshitaka Nabeshima , Akihiro Mouri
{"title":"Soy lysolecithin prevents hypertension and cognitive impairment induced in mice by high salt intake by inhibiting intestinal inflammation","authors":"Hisayoshi Kubota ,&nbsp;Kazuo Kunisawa ,&nbsp;Masaya Hasegawa ,&nbsp;Hitomi Kurahashi ,&nbsp;Kazuhiro Kagotani ,&nbsp;Yuki Fujimoto ,&nbsp;Akihito Hayashi ,&nbsp;Ryoji Sono ,&nbsp;Takehiko Tsuji ,&nbsp;Kuniaki Saito ,&nbsp;Toshitaka Nabeshima ,&nbsp;Akihiro Mouri","doi":"10.1016/j.neuint.2024.105858","DOIUrl":"10.1016/j.neuint.2024.105858","url":null,"abstract":"<div><p>High salt (HS) intake induces hypertension and cognitive impairment. Preventive strategies include against dietary supplements. Soybean lecithin is a widely used phospholipid supplement. Lysolecithin is important in cell signaling, digestion, and absorption. This study aimed to investigate the effects of lysophosphatidylcholine containing &gt;70% of the total phospholipids (LPC70), on hypertension and cognitive impairment induced in mice by HS intake. Mice were provided with HS solution (2% NaCl in drinking water) with or without LPC70 for 12 weeks. Blood pressure, cognitive function, and inflammatory response of intestine were determined. Hypertension and impaired object recognition memory induced by HS intake were implicated with increased inducible nitric oxide synthase in the small intestine and tau hyperphosphorylation in the prefrontal cortex. LPC70 treatment prevented cognitive impairment by suppressing inducible nitric oxide synthase and tau hyperphosphorylation. LPC70 may be valuable as a functional food component in preventing HS-induced cognitive impairment.</p></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"180 ","pages":"Article 105858"},"PeriodicalIF":4.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A critical appraisal of geroprotective activities of flavonoids in terms of their bio-accessibility and polypharmacology 从生物可及性和多药理角度对黄酮类化合物的老年保护活性进行严格评估
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-09-10 DOI: 10.1016/j.neuint.2024.105859
Roumi Naskar , Anirrban Ghosh , Raja Bhattacharya , Sandipan Chakraborty
{"title":"A critical appraisal of geroprotective activities of flavonoids in terms of their bio-accessibility and polypharmacology","authors":"Roumi Naskar ,&nbsp;Anirrban Ghosh ,&nbsp;Raja Bhattacharya ,&nbsp;Sandipan Chakraborty","doi":"10.1016/j.neuint.2024.105859","DOIUrl":"10.1016/j.neuint.2024.105859","url":null,"abstract":"<div><p>Flavonoids, a commonly consumed natural product, elicit health-benefits such as antioxidant, anti-inflammatory, antiviral, anti-allergic, hepatoprotective, anti-carcinogenic and neuroprotective activities. Several studies have reported the beneficial role of flavonoids in improving memory, learning, and cognition in clinical settings. Their mechanism of action is mediated through the modulation of multiple signalling cascades. This polypharmacology makes them an attractive natural scaffold for designing and developing new effective therapeutics for complex neurological disorders like Alzheimer's disease and Parkinson's disease. Flavonoids are shown to inhibit crucial targets related to neurodegenerative disorders (NDDs), including acetylcholinesterase, butyrylcholinesterase, β-secretase, γ-secretase, α-synuclein, Aβ protein aggregation and neurofibrillary tangles formation. Conserved neuro-signalling pathways related to neurotransmitter biogenesis and inactivation, ease of genetic manipulation and tractability, cost-effectiveness, and their short lifespan make <em>Caenorhabditis elegans</em> one of the most frequently used models in neuroscience research and high-throughput drug screening for neurodegenerative disorders. Here, we critically appraise the neuroprotective activities of different flavonoids based on clinical trials and epidemiological data. This review provides critical insights into the absorption, metabolism, and tissue distribution of various classes of flavonoids, as well as detailed mechanisms of the observed neuroprotective activities at the molecular level, to rationalize the clinical data. We further extend the review to critically evaluate the scope of flavonoids in the disease management of neurodegenerative disorders and review the suitability of C. <em>elegans</em> as a model organism to study the neuroprotective efficacy of flavonoids and natural products.</p></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"180 ","pages":"Article 105859"},"PeriodicalIF":4.4,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142238688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activity-based anorexia (ABA) model: Effects on brain neuroinflammation, redox balance and neuroplasticity during the acute phase 基于活动的厌食症(ABA)模型:对急性期大脑神经炎症、氧化还原平衡和神经可塑性的影响。
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-09-06 DOI: 10.1016/j.neuint.2024.105842
Vittoria Spero , Maria Scherma , Sabrina D'Amelio , Roberto Collu , Simona Dedoni , Chiara Camoglio , Carlotta Siddi , Walter Fratta , Raffaella Molteni , Paola Fadda
{"title":"Activity-based anorexia (ABA) model: Effects on brain neuroinflammation, redox balance and neuroplasticity during the acute phase","authors":"Vittoria Spero ,&nbsp;Maria Scherma ,&nbsp;Sabrina D'Amelio ,&nbsp;Roberto Collu ,&nbsp;Simona Dedoni ,&nbsp;Chiara Camoglio ,&nbsp;Carlotta Siddi ,&nbsp;Walter Fratta ,&nbsp;Raffaella Molteni ,&nbsp;Paola Fadda","doi":"10.1016/j.neuint.2024.105842","DOIUrl":"10.1016/j.neuint.2024.105842","url":null,"abstract":"<div><p>Several evidences suggest that immuno-inflammatory responses are involved in the pathogenesis of anorexia nervosa (AN). Herein we investigate the possible alteration of key mediators of inflammation, redox balance, and neuroplasticity in the brain of rats showing an anorexic-like phenotype. We modeled AN in adolescent female rats using the activity-based anorexia (ABA) paradigm and measured gene expression levels of targets of interest in the prefrontal cortex (PFC) and dorsal hippocampus (DH). We observed reduced mRNA levels of pro-inflammatory cytokines IL-1β and TNF-α, the inflammasome NLRP3, and the microglial marker CD11b in both PFC and DH of ABA animals. Conversely, the mRNA of IL-6, which acts as both a pro-inflammatory and anti-inflammatory cytokine, was increased. Moreover, we observed an overall upregulation of different antioxidant enzymes in PFC, while their profile was not affected or opposite in the DH, with the exception of MT1α. Interestingly, ABA animals showed elevated levels of the neuroplasticity marker BDNF in both PFC and DH. Our data indicate that ABA induction is associated with anatomical-specific cerebral alteration of mediators of neuroinflammation, oxidative balance and neuroplasticity. Although more research should be conducted, these results add important information about the role of these systems in the complex AN etiopathogenesis.</p></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"180 ","pages":"Article 105842"},"PeriodicalIF":4.4,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142144796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信