Neurochemistry international最新文献

筛选
英文 中文
Neuroprotective Effects of Sulforaphane in a rat model of Alzheimer's Disease induced by Aβ (1–42) peptides Aβ (1-42) 肽诱导的阿尔茨海默病大鼠模型中红豆杉素的神经保护作用
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-08-21 DOI: 10.1016/j.neuint.2024.105839
Wasi Uzzaman Khan , Mohd Salman , Mubashshir Ali , Haya Majid , M Shahar Yar , Mohd Akhtar , Suhel Parvez , Abul Kalam Najmi
{"title":"Neuroprotective Effects of Sulforaphane in a rat model of Alzheimer's Disease induced by Aβ (1–42) peptides","authors":"Wasi Uzzaman Khan ,&nbsp;Mohd Salman ,&nbsp;Mubashshir Ali ,&nbsp;Haya Majid ,&nbsp;M Shahar Yar ,&nbsp;Mohd Akhtar ,&nbsp;Suhel Parvez ,&nbsp;Abul Kalam Najmi","doi":"10.1016/j.neuint.2024.105839","DOIUrl":"10.1016/j.neuint.2024.105839","url":null,"abstract":"<div><p>The intricate nature of Alzheimer's disease (AD) has presented significant hurdles in the development of effective interventions. Sulforaphane (SFN) is of interest due to its antioxidative, anti-inflammatory, and neuroprotective properties, which could address various aspects of AD pathology. This study explores the potential of SFN in a rat model of AD induced by Aβ (1–42) peptides. AD symptoms were triggered in rats by injecting Aβ (1–42) peptides directly into their cerebral ventricles. SFN (10 mg/kg and 20 mg/kg), Trigonelline (10 mg/kg), and Pioglitazone (10 mg/kg) were administered in Aβ (1–42) treated animals. Behavioral assessments were performed using the Novel Object Recognition tests. Various biochemical parameters, such as soluble Aβ (1–42), IRS-S312, GSK-3β, TNF-α, acetylcholinesterase, nitrite levels, lipid peroxidation, and reduced glutathione activity, were quantified using ELISA kits and spectrophotometric assays. Histopathological analyses included Hematoxylin and Eosin, Crystal Violet, Congo red, and IRS-1 Immunohistochemistry staining. Quantification was performed to assess neuronal loss and Aβ plaque burden. The novelty of this study lies in its comprehensive evaluation of SFN's impact on multiple AD-related pathways at dual doses. The Novel Object Recognition test revealed that SFN, especially at higher doses, improved memory deficits induced by Aβ (1–42). Biochemically, SFN reduced hippocampal Aβ levels, IRS-S312, GSK-3β, TNF-α, and acetylcholinesterase activity, while increasing glutathione levels, all in a dose-dependent manner. Histopathological analyses further confirmed SFN's protective role against Aβ-induced neuronal damage, amyloidosis, and changes in insulin signaling. These results highlight SFN's potential as a multifaceted therapeutic agent for AD, offering a promising avenue for treatment due to its antioxidative, anti-inflammatory, and neuroprotective properties. The inclusion of combination treatments with Trigonelline and Pioglitazone alongside SFN offers insights into potential synergistic effects, which could pave the way for developing combination therapies for AD.</p></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"179 ","pages":"Article 105839"},"PeriodicalIF":4.4,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3-Nitrotyrosine shortens axons of non-dopaminergic neurons by inhibiting mitochondrial motility 3-硝基酪氨酸通过抑制线粒体的运动缩短非多巴胺能神经元的轴突。
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-08-16 DOI: 10.1016/j.neuint.2024.105832
Masahiro Hirai , Kohei Suzuki , Yusuke Kassai , Yoshiyuki Konishi
{"title":"3-Nitrotyrosine shortens axons of non-dopaminergic neurons by inhibiting mitochondrial motility","authors":"Masahiro Hirai ,&nbsp;Kohei Suzuki ,&nbsp;Yusuke Kassai ,&nbsp;Yoshiyuki Konishi","doi":"10.1016/j.neuint.2024.105832","DOIUrl":"10.1016/j.neuint.2024.105832","url":null,"abstract":"<div><p>3-Nitrotyrosine (3-NT), a byproduct of oxidative and nitrosative stress, is implicated in age-related neurodegenerative disorders. Current literature suggests that free 3-NT becomes integrated into the carboxy-terminal domain of α-tubulin via the tyrosination/detyrosination cycle. Independently of this integration, 3-NT has been associated with the cell death of dopaminergic neurons. Given the critical role of tyrosination/detyrosination in governing axonal morphology and function, the substitution of tyrosine with 3-NT in this process may potentially disrupt axonal homeostasis, although this aspect remains underexplored. In this study, we examined the impact of 3-NT on the axons of cerebellar granule neurons, which is used as a model for non-dopaminergic neurons. Our observations revealed axonal shortening, which correlated with the incorporation of 3-NT into α-tubulin. Importantly, this axonal effect was observed prior to the onset of cellular death. Furthermore, 3-NT was found to diminish mitochondrial motility within the axon, leading to a subsequent reduction in mitochondrial membrane potential. The suppression of syntaphilin, a protein responsible for anchoring mitochondria to microtubules, restored the mitochondrial motility and axonal elongation that were inhibited by 3-NT. These findings underscore the inhibitory role of 3-NT in axonal elongation by impeding mitochondrial movement, suggesting its potential involvement in axonal dysfunction within non-dopaminergic neurons.</p></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"179 ","pages":"Article 105832"},"PeriodicalIF":4.4,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0197018624001591/pdfft?md5=c622486016fb3db4a3f3635c1405a254&pid=1-s2.0-S0197018624001591-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking the potential of low-molecular-weight (Poly)phenol metabolites: Protectors at the blood-brain barrier frontier 释放低分子量(多)酚代谢物的潜力:血脑屏障前沿的保护者。
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-08-14 DOI: 10.1016/j.neuint.2024.105836
Daniela Marques , Diogo Moura-Louro , Inês P. Silva , Sara Matos , Cláudia Nunes dos Santos , Inês Figueira
{"title":"Unlocking the potential of low-molecular-weight (Poly)phenol metabolites: Protectors at the blood-brain barrier frontier","authors":"Daniela Marques ,&nbsp;Diogo Moura-Louro ,&nbsp;Inês P. Silva ,&nbsp;Sara Matos ,&nbsp;Cláudia Nunes dos Santos ,&nbsp;Inês Figueira","doi":"10.1016/j.neuint.2024.105836","DOIUrl":"10.1016/j.neuint.2024.105836","url":null,"abstract":"<div><p>Neurodegenerative diseases (NDDs) are an increasing group of chronic and progressive neurological disorders that ultimately lead to neuronal cell failure and death. Despite all efforts throughout decades, their burden on individuals and society still casts one of the most massive socioeconomic problems worldwide.</p><p>The neuronal failure observed in NDDs results from an intricacy of events, mirroring disease complexity, ranging from protein aggregation, oxidative stress, (neuro)inflammation, and even blood-brain barrier (BBB) dysfunction, ultimately leading to cognitive and motor symptoms in patients. As a result of such complex pathobiology, to date, there are still no effective treatments to treat/halt NDDs progression.</p><p>Fortunately, interest in the bioavailable low molecular weight (LMW) phenolic metabolites derived from the metabolism of dietary (poly)phenols has been rising due to their multitargeted potential in attenuating multiple NDDs hallmarks. Even if not highly BBB permeant, their relatively high concentrations in the bloodstream arising from the intake of (poly)phenol-rich diets make them ideal candidates to act within the vasculature and particularly at the level of BBB.</p><p>In this review, we highlight the most recent - though still scarce - studies demonstrating LMW phenolic metabolites’ ability to modulate BBB homeostasis, including the improvement of tight and adherens junctional proteins, as well as their power to decrease pro-inflammatory cytokine secretion and oxidative stress levels <em>in vitro</em> and <em>in vivo</em>. Specific BBB-permeant LMW phenolic metabolites, such as simple phenolic sulfates, have been emerging as strong BBB properties boosters, pleiotropic compounds capable of improving cell fitness under oxidative and pro-inflammatory conditions. Nevertheless, further studies should be pursued to obtain a holistic overview of the promising role of LMW phenolic metabolites in NDDs prevention and management to fully harness their true therapeutic potential.</p></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"179 ","pages":"Article 105836"},"PeriodicalIF":4.4,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0197018624001633/pdfft?md5=4195c9f2eaba55d525c7f66c9f69aa18&pid=1-s2.0-S0197018624001633-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141994988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monoamine oxidase and neurodegeneration: Mechanisms, inhibitors and natural compounds for therapeutic intervention 单胺氧化酶与神经退行性变:治疗干预的机制、抑制剂和天然化合物。
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-08-14 DOI: 10.1016/j.neuint.2024.105831
Chayan Banerjee , Debasmita Tripathy , Deepak Kumar , Joy Chakraborty
{"title":"Monoamine oxidase and neurodegeneration: Mechanisms, inhibitors and natural compounds for therapeutic intervention","authors":"Chayan Banerjee ,&nbsp;Debasmita Tripathy ,&nbsp;Deepak Kumar ,&nbsp;Joy Chakraborty","doi":"10.1016/j.neuint.2024.105831","DOIUrl":"10.1016/j.neuint.2024.105831","url":null,"abstract":"<div><p>Mammalian flavoenzyme Monoamine oxidase (MAO) resides on the outer mitochondrial membrane (OMM) and it is involved in the metabolism of different monoamine neurotransmitters in brain. During MAO mediated oxidative deamination of relevant substrates, H<sub>2</sub>O<sub>2</sub> is released as a catalytic by-product, thus serving as a major source of reactive oxygen species (ROS). Under normal conditions, MAO mediated ROS is reported to propel the functioning of mitochondrial electron transport chain and phasic dopamine release. However, due to its localization onto mitochondria, sudden elevation in its enzymatic activity could directly impact the form and function of the organelle. For instance, in the case of Parkinson's disease (PD) patients who are on <span>l</span>-dopa therapy, the enzyme could be a concurrent source of extensive ROS production in the presence of uncontrolled substrate (dopamine) availability, thus further impacting the health of surviving neurons. It is worth mentioning that the expression of the enzyme in different brain compartments increases with age. Moreover, the involvement of MAO in the progression of neurological disorders such as PD, Alzheimer's disease and depression has been extensively studied in recent times. Although the usage of available synthetic MAO inhibitors has been instrumental in managing these conditions, the associated complications have raised significant concerns lately. Natural products have served as a major source of lead molecules in modern-day drug discovery; however, there is still no FDA-approved MAO inhibitor which is derived from natural sources. In this review, we have provided a comprehensive overview of MAO and how the enzyme system is involved in the pathogenesis of different age-associated neuropathologic conditions. We further discussed the applications and drawbacks of the long-term usage of presently available synthetic MAO inhibitors. Additionally, we have highlighted the prospect and worth of natural product derived molecules in addressing MAO associated complications.</p></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"179 ","pages":"Article 105831"},"PeriodicalIF":4.4,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Validating the nutraceutical and neuroprotective pharmacodynamics of flavones 验证黄酮类化合物的营养和神经保护药效学。
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-08-13 DOI: 10.1016/j.neuint.2024.105829
Jeyaram Bharathi Jeyabalan , Suhrud Pathak , Esakkimuthukumar Mariappan , K.P. Mohanakumar , Muralikrishnan Dhanasekaran
{"title":"Validating the nutraceutical and neuroprotective pharmacodynamics of flavones","authors":"Jeyaram Bharathi Jeyabalan ,&nbsp;Suhrud Pathak ,&nbsp;Esakkimuthukumar Mariappan ,&nbsp;K.P. Mohanakumar ,&nbsp;Muralikrishnan Dhanasekaran","doi":"10.1016/j.neuint.2024.105829","DOIUrl":"10.1016/j.neuint.2024.105829","url":null,"abstract":"<div><p>Neurodegenerative disorders are generally characterized by progressive neuronal loss and cognitive decline, with underlying mechanisms involving oxidative stress, protein aggregation, neuroinflammation, and synaptic dysfunction. Currently, the available treatment options only improve the symptoms of the disease but do not stop disease progression; neurodegeneration. This underscores the urgent need for novel therapeutic strategies targeting multiple neurodegenerative pathways alongside the conventional therapeutic strategies available.</p><p>Emerging evidence demonstrates that flavones a subgroup of flavonoids found abundantly in various dietary sources, have surfaced as promising candidates for neuroprotection due to their multifaceted pharmacological properties. Flavones possess the potency to modulate these pathophysiological processes through their antioxidant, anti-inflammatory, and neurotrophic activities. Additionally, flavones have been shown to interact with various cellular targets, including receptors and enzymes, to confer neuroprotection.</p><p>Though there are ample evidence available, the nutraceutical and neuroprotective pharmacodynamics of flavones have not been very well established. Hence, the current review aims to explores the therapeutic potential of flavones as nutraceuticals with neuroprotective effects, focusing on their ability to modulate key pathways implicated in neurodegenerative diseases. The current article also aims to actuate supplementary research into flavones as potential agents for alleviating neurodegeneration and improving patient outcomes in neurodegenerative disorders globally.</p></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"180 ","pages":"Article 105829"},"PeriodicalIF":4.4,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visceral adiposity is associated with iron deposition and myelin loss in the brains of aged mice 内脏脂肪与老龄小鼠大脑中的铁沉积和髓鞘脱落有关。
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-08-13 DOI: 10.1016/j.neuint.2024.105833
Gyeonghui Jang , Eun-Mi Lee , Hyun-Jung Kim , Yelin Park , Nayun Hanna Bang , Jihee Lee Kang , Eun-Mi Park
{"title":"Visceral adiposity is associated with iron deposition and myelin loss in the brains of aged mice","authors":"Gyeonghui Jang ,&nbsp;Eun-Mi Lee ,&nbsp;Hyun-Jung Kim ,&nbsp;Yelin Park ,&nbsp;Nayun Hanna Bang ,&nbsp;Jihee Lee Kang ,&nbsp;Eun-Mi Park","doi":"10.1016/j.neuint.2024.105833","DOIUrl":"10.1016/j.neuint.2024.105833","url":null,"abstract":"<div><p>Iron deposition and myelin loss are observed in the brain with aging, and iron accumulation is suggested to be involved in myelin damage. However, the exact mechanism of iron deposition with aging remains unclear. This study was aimed to determine whether expanded visceral adipose tissue contributes to iron deposition and myelin loss by inducing hepcidin in the brains of aged male mice. Compared with young adult mice, levels of hepcidin in the brain, epididymal adipose tissue, and circulation were increased in aged mice, which had expanded visceral adipose tissue with inflammation. An increase in expressions of ferritin, an indicator of intracellular iron status, was accompanied by decreased levels of proteins related to myelin sheath in the brains of aged mice. These age-related changes in the brain were improved by visceral fat removal. In addition, IL-6 level, activation of microglia/macrophages, and nuclear translocation of phosphorylated Smad1/5 (pSmad1/5) inducing hepcidin expression were reduced in the brains of aged mice after visceral fat removal, accompanied by decreases of pSmad1/5- and ferritin-positive microglia/macrophages and mature oligodendrocytes. These findings indicate that visceral adiposity contributes to hepcidin-mediated iron deposition and myelin loss with inflammation in the aged brain. Our results support the importance of preventing visceral adiposity for maintaining brain health in older individuals.</p></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"179 ","pages":"Article 105833"},"PeriodicalIF":4.4,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drug delivery based exosomes uptake pathways 基于外泌体摄取途径的药物输送。
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-08-13 DOI: 10.1016/j.neuint.2024.105835
Moataz Dowaidar
{"title":"Drug delivery based exosomes uptake pathways","authors":"Moataz Dowaidar","doi":"10.1016/j.neuint.2024.105835","DOIUrl":"10.1016/j.neuint.2024.105835","url":null,"abstract":"<div><p>Most cells secrete a material called extracellular vesicles (EVs), which play a crucial role in cellular communication. Exosomes are one of the most studied types of EVs. Recent research has shown the many functions and substrates of cellular exosomes. Multiple studies have shown the efficacy of exosomes in transporting a wide variety of cargo to their respective target cells. As a result, they are often utilized to transport medicaments to patients. Natural exosomes as well as exosomes modified with other compounds to enhance transport capabilities have been employed. In this article, we take a look at how different types of exosomes and modified exosomes may transport different types of cargo to their respective targets. Exosomes have a lot of potential as drug delivery vehicles for many synthetic compounds, proteins, nucleic acids, and gene repair specialists because they can stay in the body for a long time, are biocompatible, and can carry natural materials. A good way to put specific protein particles into exosomes is still not clear, though, and the exosomes can't be used in many situations yet. The determinants for exosome production, as well as ways for loading certain therapeutic molecules (proteins, nucleic acids, and small compounds), were covered in this paper. Further study and the development of therapeutic exosomes may both benefit from the information collected in this review.</p></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"179 ","pages":"Article 105835"},"PeriodicalIF":4.4,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141987112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ISRIB ameliorates spatial learning and memory impairment induced by adolescent intermittent ethanol exposure in adult male rats ISRIB 可改善成年雄性大鼠因青少年间歇性接触乙醇而导致的空间学习和记忆损伤。
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-08-12 DOI: 10.1016/j.neuint.2024.105834
Wenge Jia , Chenchen Li , Hongyun Chen , Xinyu Wang , Yuan Liu , Wanbing Shang , Bian Wang , Wenjing Meng , Yaxin Guo , Lijie Zhu , Dan Wang , Danya Zhou , Bin Zhao , Lai Wei
{"title":"ISRIB ameliorates spatial learning and memory impairment induced by adolescent intermittent ethanol exposure in adult male rats","authors":"Wenge Jia ,&nbsp;Chenchen Li ,&nbsp;Hongyun Chen ,&nbsp;Xinyu Wang ,&nbsp;Yuan Liu ,&nbsp;Wanbing Shang ,&nbsp;Bian Wang ,&nbsp;Wenjing Meng ,&nbsp;Yaxin Guo ,&nbsp;Lijie Zhu ,&nbsp;Dan Wang ,&nbsp;Danya Zhou ,&nbsp;Bin Zhao ,&nbsp;Lai Wei","doi":"10.1016/j.neuint.2024.105834","DOIUrl":"10.1016/j.neuint.2024.105834","url":null,"abstract":"<div><p>Alcohol exposure in adolescence is considered a major cause of cognitive impairments later in life including spatial learning and memory. Integrated stress response (ISR), a program of conservative translation and transcription, is crucial in synaptic plasticity and memory. Although previous studies have elucidated ISR in different brain areas involved in learning and memory disorders, the impact of ISR on learning and memory following adolescent alcohol exposure remains unclear. Here, we demonstrated that adolescent intermittent ethanol (AIE) exposure caused spatial learning and memory impairment, combined with neuronal damage in the medial prefrontal cortex (mPFC), nucleus accumbens (NAc) and hippocampus (HIP) in adult rats. Moreover, integrated stress response inhibitor (ISRIB) administration not only improved spatial learning and memory impairment and neuronal damage but also inhibited the endoplasmic reticulum stress (ER) and reversed changes in synaptic proteins. These findings suggested that ISRIB ameliorates AIE exposure-induced spatial learning and memory deficits by improving neural morphology and synaptic function through inhibiting ER stress signaling pathway in the mPFC, NAc and HIP in adulthood. Our findings may enhance comprehension of cognitive function and neuronal effects of adolescent ethanol exposure and ISRIB treatment may be an underlying potential option for addressing alcohol-induced learning and memory deficits.</p></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"179 ","pages":"Article 105834"},"PeriodicalIF":4.4,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dopaminergic cAMP signaling in mouse olfactory bulb astrocytes 小鼠嗅球星形胶质细胞中的多巴胺能 cAMP 信号转导
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-08-10 DOI: 10.1016/j.neuint.2024.105828
Levi von Kalben , Jessica Sauer , Christine Gee , Daniela Hirnet , Christian Lohr
{"title":"Dopaminergic cAMP signaling in mouse olfactory bulb astrocytes","authors":"Levi von Kalben ,&nbsp;Jessica Sauer ,&nbsp;Christine Gee ,&nbsp;Daniela Hirnet ,&nbsp;Christian Lohr","doi":"10.1016/j.neuint.2024.105828","DOIUrl":"10.1016/j.neuint.2024.105828","url":null,"abstract":"<div><p>Cyclic AMP (cAMP) is an important second messenger in virtually all animal cell types, including astrocytes. In the brain, it modulates energy metabolism, development and synaptic plasticity. Dopamine receptors are G protein-coupled receptors that affect cAMP production by adenylyl cyclases. They are divided into two subgroups, D1-like receptors linked to G<sub>s</sub> proteins stimulating cAMP production and D2-like receptors linked to G<sub>i/o</sub> proteins inhibiting cAMP production. In the present study, we investigated the effect of dopamine receptor activation on cAMP dynamics in astrocytes of the mouse olfactory bulb, the brain region with the largest population of dopaminergic neurons. Using the genetically encoded cAMP sensor Flamindo2 we visualized changes in the cytosolic cAMP concentration and showed that dopamine application results in a transient increase in cAMP. This cAMP increase could be mimicked by the D1-like receptor agonist A 68930 and was inhibited by the D1-like receptor antagonist SCH 23390, whereas D2-like receptor ligands had no effect on the astrocytic cAMP concentration. Thus, olfactory bulb astrocytes express D1-like receptors that are linked to cAMP production.</p></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"179 ","pages":"Article 105828"},"PeriodicalIF":4.4,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
l-theanine, the unique constituent of tea, improves neuronal survivability by curtailing inflammatory responses in MPTP model of Parkinson's disease 茶叶中的独特成分 L-茶氨酸可通过抑制帕金森病 MPTP 模型中的炎症反应来提高神经元的存活率。
IF 4.4 3区 医学
Neurochemistry international Pub Date : 2024-08-10 DOI: 10.1016/j.neuint.2024.105830
Satarupa Deb , Anupom Borah
{"title":"l-theanine, the unique constituent of tea, improves neuronal survivability by curtailing inflammatory responses in MPTP model of Parkinson's disease","authors":"Satarupa Deb ,&nbsp;Anupom Borah","doi":"10.1016/j.neuint.2024.105830","DOIUrl":"10.1016/j.neuint.2024.105830","url":null,"abstract":"<div><p>Discrete components of tea possess multitude of health advantages. Escalating evidence advocate a consequential association between habitual tea consumption and a subsided risk of Parkinson's disease (PD). <span>l</span>-theanine is a non-protein amino acid inherent in tea plants, which exhibits structural resemblance with glutamate, the copious excitatory neurotransmitter in brain. Neuromodulatory effects of <span>l</span>-theanine are evident from its competency in traversing the blood brain barrier, promoting a sense of calmness beyond enervation, and enhancing cognition and attention. Despite the multifarious reports on antioxidant properties of <span>l</span>-theanine and its potential to regulate brain neurotransmitter levels, it is obligatory to understand its exact contribution in ameliorating the pathophysiology of PD. In this study, MPTP-induced mouse model was established and PD-like symptoms were developed in test animals where an increasing dosage of <span>l</span>-theanine (5, 25, 50, 100 and 250 mg/kg) was intraperitoneally administered for 23 days. 50 and 100 mg/kg dosage of <span>l</span>-theanine alleviated motor impairment and specific non-motor symptoms in Parkinsonian mice. The dosage of 100 mg/kg of <span>l</span>-theanine also improved striatal dopamine and serotonin level and tyrosine-hydroxylase positive cell count in the substantia nigra. Most crucial finding of the study is the proficiency of <span>l</span>-theanine to diminish astroglial injury as well as nitric oxide synthesis, which suggests its possible credential to prevent neurodegeneration by virtue of its anti-inflammatory attribute.</p></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"179 ","pages":"Article 105830"},"PeriodicalIF":4.4,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信