Leptin deficiency leads to nerve degeneration and impairs axon remyelination by inducing Schwann cell apoptosis and demyelination in type 2 diabetic peripheral neuropathy in rats

IF 4.4 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yuan-Shuo Hsueh , Szu-Han Chen , Wan-Ling Tseng , Sheng-Che Lin , De-Quan Chen , Chih-Chung Huang , Yuan-Yu Hsueh
{"title":"Leptin deficiency leads to nerve degeneration and impairs axon remyelination by inducing Schwann cell apoptosis and demyelination in type 2 diabetic peripheral neuropathy in rats","authors":"Yuan-Shuo Hsueh ,&nbsp;Szu-Han Chen ,&nbsp;Wan-Ling Tseng ,&nbsp;Sheng-Che Lin ,&nbsp;De-Quan Chen ,&nbsp;Chih-Chung Huang ,&nbsp;Yuan-Yu Hsueh","doi":"10.1016/j.neuint.2024.105908","DOIUrl":null,"url":null,"abstract":"<div><div>Diabetic peripheral neuropathy, characterized by symptoms such as paresthesia, neuropathic pain, and potential lower limb amputation, poses significant clinical management challenges. Recent studies suggest that chronic hyperglycemia-induced Schwann cells (SCs) apoptosis contributes to neurodegeneration and impaired nerve regeneration, but the detailed mechanisms are still unknown. Our study investigated a mixed-sex type 2 diabetes mellitus (T2DM) rat model using leptin knockout (KO) to simulate obesity and diabetes-related conditions. Through extensive assessments, including mechanical allodynia, electrophysiology, and microcirculation analyses, along with myelin degradation studies in KO versus wild-type rats, we focused on apoptosis, autophagy, and SCs dedifferentiation in the sciatic nerve and examined nerve regeneration in KO rats. KO rats exhibited notable reductions in mechanical withdrawal force, prolonged latency, decreased compound muscle action potential (CMAP) amplitude, reduced microcirculation, myelin sheath damage, and increases in apoptosis, autophagy, and SCs dedifferentiation. Moreover, leptin KO was found to impair peripheral nerve regeneration postinjury, as indicated by reduced muscle weight, lower CMAP amplitude, extended latency, and decreased remyelination and SCs density. These findings underscore the effectiveness of the T2DM rat model in clarifying the impact of leptin KO on SCs apoptosis, dedifferentiation, and demyelination, providing valuable insights into new therapeutic avenues for treating T2DM-induced peripheral neuropathy.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"182 ","pages":"Article 105908"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemistry international","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197018624002353","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic peripheral neuropathy, characterized by symptoms such as paresthesia, neuropathic pain, and potential lower limb amputation, poses significant clinical management challenges. Recent studies suggest that chronic hyperglycemia-induced Schwann cells (SCs) apoptosis contributes to neurodegeneration and impaired nerve regeneration, but the detailed mechanisms are still unknown. Our study investigated a mixed-sex type 2 diabetes mellitus (T2DM) rat model using leptin knockout (KO) to simulate obesity and diabetes-related conditions. Through extensive assessments, including mechanical allodynia, electrophysiology, and microcirculation analyses, along with myelin degradation studies in KO versus wild-type rats, we focused on apoptosis, autophagy, and SCs dedifferentiation in the sciatic nerve and examined nerve regeneration in KO rats. KO rats exhibited notable reductions in mechanical withdrawal force, prolonged latency, decreased compound muscle action potential (CMAP) amplitude, reduced microcirculation, myelin sheath damage, and increases in apoptosis, autophagy, and SCs dedifferentiation. Moreover, leptin KO was found to impair peripheral nerve regeneration postinjury, as indicated by reduced muscle weight, lower CMAP amplitude, extended latency, and decreased remyelination and SCs density. These findings underscore the effectiveness of the T2DM rat model in clarifying the impact of leptin KO on SCs apoptosis, dedifferentiation, and demyelination, providing valuable insights into new therapeutic avenues for treating T2DM-induced peripheral neuropathy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurochemistry international
Neurochemistry international 医学-神经科学
CiteScore
8.40
自引率
2.40%
发文量
128
审稿时长
37 days
期刊介绍: Neurochemistry International is devoted to the rapid publication of outstanding original articles and timely reviews in neurochemistry. Manuscripts on a broad range of topics will be considered, including molecular and cellular neurochemistry, neuropharmacology and genetic aspects of CNS function, neuroimmunology, metabolism as well as the neurochemistry of neurological and psychiatric disorders of the CNS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信