Zdenko Pirník , Ivan Szadvári , Veronika Borbélyová , Aleksandra Tomova
{"title":"Altered sex differences related to food intake, hedonic preference, and FosB/deltaFosB expression within central neural circuit involved in homeostatic and hedonic food intake regulation in Shank3B mouse model of autism spectrum disorder","authors":"Zdenko Pirník , Ivan Szadvári , Veronika Borbélyová , Aleksandra Tomova","doi":"10.1016/j.neuint.2024.105895","DOIUrl":"10.1016/j.neuint.2024.105895","url":null,"abstract":"<div><div>Autism spectrum disorder (ASD) is a neurodevelopmental disorder accompanied by narrow interests, difficulties in communication and social interaction, and repetitive behavior. In addition, ASD is frequently associated with eating and feeding problems. Although the symptoms of ASD are more likely to be observed in boys, the prevalence of eating disorders is more common in females. The ingestive behavior is regulated by the integrative system of the brain, which involves both homeostatic and hedonic neural circuits. Sex differences in the physiology of food intake depend on sex hormones regulating the expression of the ASD-associated Shank genes. Shank3 mutation leads to ASD-like traits and Shank3B −/− mice have been established as an animal model to study the neurobiology of ASD. Therefore, the long-lasting neuronal activity in the central neural circuit related to the homeostatic and hedonic regulation of food intake was evaluated in both sexes of Shank3B mice, followed by the evaluation of the food intake and preference. In the Shank3B +/+ genotype, well-preserved relationships in the tonic activity within the homeostatic neural network together with the relationships between ingestion and hedonic preference were observed in males but were reduced in females. These interrelations were partially or completely lost in the mice with the Shank3B −/− genotype. A decreased hedonic preference for the sweet taste but increased total food intake was found in the Shank3B −/− mice. In the Shank3B −/− group, there were altered sex differences related to the amount of tonic cell activity in the hedonic and homeostatic neural networks, together with altered sex differences in sweet and sweet-fat solution intake. Furthermore, the Shank3B −/− females exhibited an increased intake and preference for cheese compared to the Shank3B +/+ ones. The obtained data indicate altered functional crosstalk between the central homeostatic and hedonic neural circuits involved in the regulation of food intake in ASD.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"181 ","pages":"Article 105895"},"PeriodicalIF":4.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meritxell Deulofeu , Eladia M. Peña-Méndez , Petr Vaňhara , Josef Havel , Lukáš Moráň , Lukáš Pečinka , Anna Bagó-Mas , Enrique Verdú , Victoria Salvadó , Pere Boadas-Vaello
{"title":"Discriminating fingerprints of chronic neuropathic pain following spinal cord injury using artificial neural networks and mass spectrometry analysis of female mice serum","authors":"Meritxell Deulofeu , Eladia M. Peña-Méndez , Petr Vaňhara , Josef Havel , Lukáš Moráň , Lukáš Pečinka , Anna Bagó-Mas , Enrique Verdú , Victoria Salvadó , Pere Boadas-Vaello","doi":"10.1016/j.neuint.2024.105890","DOIUrl":"10.1016/j.neuint.2024.105890","url":null,"abstract":"<div><div>Spinal cord injury (SCI) often leads to central neuropathic pain, a condition associated with significant morbidity and is challenging in terms of the clinical management. Despite extensive efforts, identifying effective biomarkers for neuropathic pain remains elusive. Here we propose a novel approach combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with artificial neural networks (ANNs) to discriminate between mass spectral profiles associated with chronic neuropathic pain induced by SCI in female mice. Functional evaluations revealed persistent chronic neuropathic pain following mild SCI as well as minor locomotor disruptions, confirming the value of collecting serum samples. Mass spectra analysis revealed distinct profiles between chronic SCI and sham controls. On applying ANNs, 100% success was achieved in distinguishing between the two groups through the intensities of m/z peaks. Additionally, the ANNs also successfully discriminated between chronic and acute SCI phases. When reflexive pain response data was integrated with mass spectra, there was no improvement in the classification. These findings offer insights into neuropathic pain pathophysiology and underscore the potential of MALDI-TOF MS coupled with ANNs as a diagnostic tool for chronic neuropathic pain, potentially guiding attempts to discover biomarkers and develop treatments.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"181 ","pages":"Article 105890"},"PeriodicalIF":4.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Neuron-selective and activity-dependent splicing of BDNF exon I–IX pre-mRNA","authors":"Mamoru Fukuchi , Yumi Shibasaki , Yuto Akazawa , Hitoshi Suzuki-Masuyama , Ken-ichi Takeuchi , Yumika Iwazaki , Akiko Tabuchi , Masaaki Tsuda","doi":"10.1016/j.neuint.2024.105889","DOIUrl":"10.1016/j.neuint.2024.105889","url":null,"abstract":"<div><div>Brain-derived neurotrophic factor (BDNF) is essential for numerous neuronal functions, including learning and memory. The expression of BDNF is regulated by distinctive transcriptional and post-transcriptional mechanisms. The <em>Bdnf</em> gene in mice and rats comprises eight untranslated exons (exons I–VIII) and one exon (exon IX) that contains the pre-proBDNF coding sequence. Multiple splice donor sites on the untranslated exons and a single acceptor site upstream of the coding sequence result in the characteristic exon skipping patterns that generate multiple <em>Bdnf</em> mRNA variants, which are essential for the spatiotemporal regulation of BDNF expression, mRNA localization, mRNA stability, and translational control. However, the regulation of <em>Bdnf</em> pre-mRNA splicing remains unclear. Here, we focused on the splicing of <em>Bdnf</em> exon I–IX pre-mRNA. We first constructed a minigene to evaluate <em>Bdnf</em> exon I–IX pre-mRNA splicing. Compared with <em>Bdnf</em> exon I–IX pre-mRNA splicing in non-neuronal NIH3T3 cells, splicing was preferentially observed in primary cultures of cortical neurons. Additionally, a series of overexpression and knockdown experiments suggested that neuro-oncological ventral antigen (NOVA) 2 is involved in the neuron-selective splicing of <em>Bdnf</em> exon I–IX pre-mRNA. Supporting this finding, endogenous <em>Nova2</em> mRNA expression was markedly higher in neurons, and a strong correlation between endogenous <em>Bdnf</em> exon I–IX and <em>Nova2</em> mRNA was observed across several brain regions. Furthermore, <em>Bdnf</em> exon I–IX pre-mRNA splicing was facilitated by Ca<sup>2+</sup> signals evoked via L-type voltage-dependent Ca<sup>2+</sup> channels. Notably, among the <em>Bdnf</em> pre-mRNA splicing investigated in the current study, neuron-selective and activity-dependent splicing was observed in <em>Bdnf</em> exon I–IX pre-mRNA. In conclusion, <em>Bdnf</em> exon I-IX pre-mRNA splicing is preferentially observed in neurons and is facilitated in an activity-dependent manner. The neuron-selective and activity-dependent splicing of <em>Bdnf</em> exon I–IX pre-mRNA may contribute to the efficient induction of <em>Bdnf</em> exon I–IX expression in neurons.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"181 ","pages":"Article 105889"},"PeriodicalIF":4.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Defne Engur , Serap Cilaker Micili , Sila Soy , Gökcen Bilici , Kemal Ugur Tufekci , Cagla Kiser , İlkcan Ercan , Abdullah Kumral , Sermin Genc
{"title":"Supplemental oxygen alters the pentose phosphate pathway in the developing mouse brain through SIRT signaling","authors":"Defne Engur , Serap Cilaker Micili , Sila Soy , Gökcen Bilici , Kemal Ugur Tufekci , Cagla Kiser , İlkcan Ercan , Abdullah Kumral , Sermin Genc","doi":"10.1016/j.neuint.2024.105886","DOIUrl":"10.1016/j.neuint.2024.105886","url":null,"abstract":"<div><div>Oxygen support plays a critical role in the management of preterm infants in neonatal intensive care units. On the other hand, the possible effects of oxygen supplementation on cellular functions, specifically glucose metabolism, have been less understood.</div></div><div><h3>Purpose</h3><div>of the study is to investigate whether supplemental oxygen alters glucose metabolism and pentose phosphate pathway (PPP) activity in the brain tissue and its relevance with silent information regulator proteins (SIRT) pathway. For this purpose, newborn C57BL/6 pups were exposed to 90% oxygen from birth until postnatal day 7 (PN7) and metabolites of glysolysis and PPP were investigated through metabolomics analysis. SIRT1, glucose-6-phosphate dehydrogenase (G6PD) and transaldolase (TALDO) proteins were examined immunohistochemically and molecularly in the prefrontal and hippocampus regions of the brain. Later on, SIRT1 inhibition was carried out.</div><div>Our results indicate that supplemental oxygen causes an increase in PPP metabolites as well as activation of G6PD enzyme in the brain tissue, which is reversed by SIRT1 inhibition. Our study underlines a connection between supplemental oxygen, glucose metabolism, PPP pathway and the SIRT signaling. Understanding these intricate relationships not only deepens our knowledge of cellular physiology but also holds promise for therapeutic interventions for creating neuroprotective strategies in preterm brain.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"180 ","pages":"Article 105886"},"PeriodicalIF":4.4,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caifeng Shao , Wen-Qian Zhou , Hong-Yi Jia , Guangying Li , Yifei Ma , Mingwei Zhao , Hongjie Wu , Kun Yang , Xin Qian , Ming-Ming Zhang
{"title":"Reassessment of capsaicin desensitization in the rodent spinal dorsal horn","authors":"Caifeng Shao , Wen-Qian Zhou , Hong-Yi Jia , Guangying Li , Yifei Ma , Mingwei Zhao , Hongjie Wu , Kun Yang , Xin Qian , Ming-Ming Zhang","doi":"10.1016/j.neuint.2024.105887","DOIUrl":"10.1016/j.neuint.2024.105887","url":null,"abstract":"<div><div>Capsaicin activates primary afferent transient receptor potential vanilloid 1 (TRPV1) in the spinal dorsal horn and induces exaggerated glutamate release. This capsaicin action is followed by a lasting refractory state referred to as “capsaicin desensitization”, which is considered a presynaptic event. In this study, using whole-cell recordings and holographic photostimulation, we reassessed this notion by investigating presynaptic glutamate release and the postsynaptic glutamate response during capsaicin administration. We found that both presynaptic synchronous glutamate release and the postsynaptic glutamate response were largely attenuated in this refractory state; in contrast, asynchronous release was exaggerated. Further behavioral studies revealed a quick increase in the mechanical pain threshold with intrathecal capsaicin administration. Taken together, both presynaptic synchronous glutamate release and the postsynaptic response are downregulated during capsaicin desensitization, and this desensitization may transiently increase the pain threshold. Since both presynaptic synchronous release and postsynaptic glutamate responses are attenuated, the traditional electrophysiological evidence supporting capsaicin desensitization as a presynaptic event should be reassessed.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"181 ","pages":"Article 105887"},"PeriodicalIF":4.4,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qixuan Guo , Qing Liu , Shuai Zhou , Yabin Lin , Ang Lv , Luping Zhang , Liming Li , Fei Huang
{"title":"Apelin regulates mitochondrial dynamics by inhibiting Mst1-JNK-Drp1 signaling pathway to reduce neuronal apoptosis after spinal cord injury","authors":"Qixuan Guo , Qing Liu , Shuai Zhou , Yabin Lin , Ang Lv , Luping Zhang , Liming Li , Fei Huang","doi":"10.1016/j.neuint.2024.105885","DOIUrl":"10.1016/j.neuint.2024.105885","url":null,"abstract":"<div><div>In the secondary injury stage of spinal cord injury, mitochondrial dysfunction leads to decreased ATP production, increased ROS production, and activation of the mitochondria-mediated apoptosis signaling pathway. This ultimately intensifies neuronal death and promotes the progression of the injury. Apelin, a peptide produced by the APLN gene, has demonstrated promise in the treatment of spinal cord injury. The aim of this study was to investigate how Apelin protects neurons after spinal cord injury by influencing the mitochondrial dynamics. The results showed that Apelin has the ability to reduce mitochondrial fission, enhance the mitochondrial membrane potential, improve antioxidant capacity, facilitate the clearance of excess ROS, and ultimately decrease apoptosis in PC12 cells. Moreover, Apelin is overexpressed in neurons in the damaged part of the spinal cord, contributing to reduce mitochondrial fission, improve antioxidant capacity, increase ATP production, decrease apoptosis, promote spinal cord morphological repair, maintain the number of nissl bodies, and enhance signal transduction in the descending spinal cord pathway. Apelin exerts its protective effect by inhibiting the Mst1-JNK-Drp1 signaling pathway. In summary, our study further improved the effect of Apelin in the treatment of spinal cord injury, revealed the mechanism of Apelin in protecting damaged neurons after spinal cord injury by maintaining mitochondrial homeostasis, and provided a new therapeutic mechanism for Apelin in spinal cord injury.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"180 ","pages":"Article 105885"},"PeriodicalIF":4.4,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ras, RhoA, and vascular pharmacology in neurodevelopment and aging","authors":"Ruth Nussinov , Hyunbum Jang , Feixiong Cheng","doi":"10.1016/j.neuint.2024.105883","DOIUrl":"10.1016/j.neuint.2024.105883","url":null,"abstract":"<div><div>Small GTPases Ras, Rac, and RhoA are crucial regulators of cellular functions. They also act in dysregulated cell proliferation and transformation. Multiple publications have focused on illuminating their roles and mechanisms, including in immune system pathologies. Their functions in neurology-related diseases, neurodegeneration and neurodevelopment, are also emerging, as well as their potential as pharmacological targets in both pathologies. Observations increasingly suggest that these pathologies may relate to activation (or suppression) of signaling by members of the Ras superfamily, especially Ras, Rho, and Rac isoforms, and components of their signaling pathways. Germline (or embryonic) mutations that they harbor are responsible for neurodevelopmental disorders, such as RASopathies, autism spectrum disorder, and dilated cardiomyopathy. In aging, they promote neurodegenerative diseases, with Rho GTPase featuring in their pharmacology, as in the case of Alzheimer's disease (AD). Significantly, drugs with observed anti-AD activity, particularly those involved in cardiovascular systems, are associated with the RhoA signaling, as well as cerebral vasculature in brain development and aging. This leads us to suggest that anti-AD drugs could inform neurodevelopmental disorders, including pediatric low-grade gliomas pharmacology. Neurodevelopmental disorders associated with RhoA, like autism, are also connected with vascular systems, thus could be targets of vascular system-connected drugs.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"181 ","pages":"Article 105883"},"PeriodicalIF":4.4,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meng-Qing Li , Xiao-Yu Lu , Jia-Yu Yao , Guang-Jing Zou , Ze-Hao Zeng , Lin-Xuan Zhang , Shi-Fen Zhou , Zhao-Rong Chen , Tian-Shu Zhao , Zi-Rui Guo , Yan-Hui Cui , Fang Li , Chang-Qi Li
{"title":"LASP1 in the nucleus accumbens modulates methamphetamine-induced conditioned place preference in mice","authors":"Meng-Qing Li , Xiao-Yu Lu , Jia-Yu Yao , Guang-Jing Zou , Ze-Hao Zeng , Lin-Xuan Zhang , Shi-Fen Zhou , Zhao-Rong Chen , Tian-Shu Zhao , Zi-Rui Guo , Yan-Hui Cui , Fang Li , Chang-Qi Li","doi":"10.1016/j.neuint.2024.105884","DOIUrl":"10.1016/j.neuint.2024.105884","url":null,"abstract":"<div><div>Methamphetamine (METH) is a highly addictive and widely abused drug that causes complex adaptive changes in the brain's reward system, such as the nucleus accumbens (NAc). LASP1 (LIM and SH 3 domain protein 1) as an actin-binding protein, regulates synaptic plasticity. However, the role and mechanism by which NAc LASP1 contributes to METH addiction remains unclear. In this study, adult male C57BL/6J mice underwent repeated METH exposure or METH-induced conditioned place preference (CPP). Western blotting and immunohistochemistry were used to determine LASP1 expression in the NAc. Furthermore, LASP1 knockdown or overexpression using adeno-associated virus (AAV) administration via stereotactic injection into the NAc was used to observe the corresponding effects on CPP. We found that repeated METH exposure and METH-induced CPP upregulated LASP1 expression in the NAc. LASP1 silencing in the NAc reversed METH-induced CPP and reduced PSD95, NR2A, and NR2B expression, whereas LASP1 overexpression in the NAc enhanced CPP acquisition, accompanied by increased PSD95, NR2A, and NR2B expression. Our findings demonstrate an important role of NAc LASP1 in modulating METH induced drug-seeking behavior and the underlying mechanism may be related to regulate the expression of synapse-associated proteins in the NAc. These results reveal a novel molecular regulator of the actions of METH on the NAc and provide a new strategy for treating METH addiction.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"180 ","pages":"Article 105884"},"PeriodicalIF":4.4,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
João L. Alves , Patrícia M. Reis , Rosa M. Quinta-Ferreira , M. Emília Quinta-Ferreira , Carlos M. Matias
{"title":"Changes in reactive oxygen species and autofluorescence under hypoxia at the hippocampal CA3 area: Role of calcium and zinc influxes","authors":"João L. Alves , Patrícia M. Reis , Rosa M. Quinta-Ferreira , M. Emília Quinta-Ferreira , Carlos M. Matias","doi":"10.1016/j.neuint.2024.105882","DOIUrl":"10.1016/j.neuint.2024.105882","url":null,"abstract":"<div><div>Reactive oxygen species (ROS) have an important role in cellular biology, being involved, in a way that depends on their levels, in cell signaling processes or in oxidative stress, probably associated with neurodegenerative and other diseases. Most of the studies about ROS formation were performed in ischemic conditions, and thus, there is limited knowledge about ROS formation in less severe hypoxic conditions. This study investigates neuronal ROS generation and autofluorescence changes in hypoxic conditions, focusing on the involvement of calcium and zinc. Using hippocampal slices from Wistar rats, ROS production was monitored by the permeant fluorescent indicator H<sub>2</sub>DCFDA under different oxygenation levels. Moderate hypoxia (40% O<sub>2</sub>) led to a small ROS increase, while severe hypoxia (0% O<sub>2</sub>) showed a more pronounced rise. KCl-induced depolarization significantly enhanced ROS formation, particularly under severe hypoxia. Inhibition of NMDA receptors reduced ROS generation without affecting autofluorescence, while chelation of zinc ions decreased ROS production and increased flavin adenine dinucleotide (FAD) autofluorescence. These findings suggest that, in hypoxic conditions, ROS formation is mediated by calcium entry through NMDA receptors and also by zinc influxes. Thus, these ions play a crucial role in oxidative stress, which may be related with neurodegenerative diseases associated with ROS dysregulation.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"180 ","pages":"Article 105882"},"PeriodicalIF":4.4,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hong Guo , Yuanwei Dong , Danqing Luo , Meng Gong , Jianfeng Sun , Zhipeng Wu , Zhixiang Liu , Lei Zhong , Song Jin
{"title":"MRPL41, as a target for acupuncture, promotes neuron apoptosis in models of ischemic stroke via activating p53 pathway","authors":"Hong Guo , Yuanwei Dong , Danqing Luo , Meng Gong , Jianfeng Sun , Zhipeng Wu , Zhixiang Liu , Lei Zhong , Song Jin","doi":"10.1016/j.neuint.2024.105881","DOIUrl":"10.1016/j.neuint.2024.105881","url":null,"abstract":"<div><div>Neuronal death is the key cause of ischemic stroke. Acupuncture (Acu) is a recognized method for the treatment and amelioration of cerebral ischemia. However, the molecular mechanism of Acu for treating ischemic stroke has not yet been detailedly elucidated. Based our microarray analysis results, mitochondrial ribosomal protein L41 (MRPL41), which is related to apoptosis, was identified as the target of Acu. MRPL41 expression was increased in middle cerebral artery occlusion/reperfusion (MCAO/R) model and reduced after Acu treatment. Following, MCAO/R model and oxygen and glucose deprivation/reoxygenation (OGD/R) model were established to explore the effect of MRPL41. Knockdown of MRPL41 increased cell viability and ani-apoptotic protein (Bcl-2) expression, and reduced apoptosis intensity and pro-apoptotic protein (Bax and Cleaved caspase-3) of OGD/R neurons. <em>In vivo</em>, MRPL41 silencing decreased neurological severity score, shrank infarct area, reduced encephaledema and neuron apoptosis. In addition, reduction of MRPL41 caused loss of p53. Our data uncover that Acu targets MRPL41, following with inhibiting neuron apoptosis via p53 pathway, thereby ameliorating ischemic stroke.</div></div>","PeriodicalId":398,"journal":{"name":"Neurochemistry international","volume":"180 ","pages":"Article 105881"},"PeriodicalIF":4.4,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}