IEEE Reviews in Biomedical Engineering最新文献

筛选
英文 中文
Towards ultrasound wearable technology for cardiovascular monitoring: from device development to clinical validation. 开发用于心血管监测的超声可穿戴技术:从设备开发到临床验证。
IF 17.2 1区 工程技术
IEEE Reviews in Biomedical Engineering Pub Date : 2024-06-06 DOI: 10.1109/RBME.2024.3410399
AnaBelen Amado-Rey, AnaCarolina GoncalvesSeabra, Thomas Stieglitz
{"title":"Towards ultrasound wearable technology for cardiovascular monitoring: from device development to clinical validation.","authors":"AnaBelen Amado-Rey, AnaCarolina GoncalvesSeabra, Thomas Stieglitz","doi":"10.1109/RBME.2024.3410399","DOIUrl":"10.1109/RBME.2024.3410399","url":null,"abstract":"<p><p>The advent of flexible, compact, energy-efficient, robust, and user-friendly wearables has significantly impacted the market growth, with an estimated value of 61.30 billion USD in 2022. Wearable sensors have revolutionized in-home health monitoring by warranting continuous measurements of vital parameters. Ultrasound is used to non-invasively, safely, and continuously record vital parameters. The next generation of smart ultrasonic devices for healthcare integrates microelectronics with flexible, stretchable patches and body-conformable devices. They offer not only wearability, and user comfort, but also higher tracking accuracy of immediate changes of cardiovascular parameters. Moreover, due to the fixed adhesion to the skin, errors derived from probe placement or patient movement are mitigated, even though placement at the correct anatomical location is still critical and requires a user's skill and knowledge. In this review, the steps required to bring wearable ultrasonic systems into the medical market (technologies, device development, signal-processing, in-lab validation, and, finally, clinical validation) are discussed. The next generation of vascular ultrasound and its future research directions offer many possibilities for modernizing vascular health assessment and the quality of personalized care for home and clinical monitoring.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.2,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated Radiology Report Generation: A Review of Recent Advances. 自动生成放射报告:最新进展回顾
IF 17.6 1区 工程技术
IEEE Reviews in Biomedical Engineering Pub Date : 2024-06-03 DOI: 10.1109/RBME.2024.3408456
Phillip Sloan, Philip Clatworthy, Edwin Simpson, Majid Mirmehdi
{"title":"Automated Radiology Report Generation: A Review of Recent Advances.","authors":"Phillip Sloan, Philip Clatworthy, Edwin Simpson, Majid Mirmehdi","doi":"10.1109/RBME.2024.3408456","DOIUrl":"https://doi.org/10.1109/RBME.2024.3408456","url":null,"abstract":"<p><p>Increasing demands on medical imaging departments are taking a toll on the radiologist's ability to deliver timely and accurate reports. Recent technological advances in artificial intelligence have demonstrated great potential for automatic radiology report generation (ARRG), sparking an explosion of research. This survey paper conducts a methodological review of contemporary ARRG approaches by way of (i) assessing datasets based on characteristics, such as availability, size, and adoption rate, (ii) examining deep learning training methods, such as contrastive learning and reinforcement learning, (iii) exploring state-of-the-art model architectures, including variations of CNN and transformer models, (iv) outlining techniques integrating clinical knowledge through multimodal inputs and knowledge graphs, and (v) scrutinising current model evaluation techniques, including commonly applied NLP metrics and qualitative clinical reviews. Furthermore, the quantitative results of the reviewed models are analysed, where the top performing models are examined to seek further insights. Finally, potential new directions are highlighted, with the adoption of additional datasets from other radiological modalities and improved evaluation methods predicted as important areas of future development.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.6,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141238020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alzheimer's Disease Diagnosis in the Preclinical Stage: Normal Aging or Dementia. 临床前阶段的阿尔茨海默病诊断:正常衰老还是痴呆症
IF 17.6 1区 工程技术
IEEE Reviews in Biomedical Engineering Pub Date : 2024-03-13 DOI: 10.1109/RBME.2024.3376835
Fahimeh Marvi, Yun-Hsuan Chen, Mohamad Sawan
{"title":"Alzheimer's Disease Diagnosis in the Preclinical Stage: Normal Aging or Dementia.","authors":"Fahimeh Marvi, Yun-Hsuan Chen, Mohamad Sawan","doi":"10.1109/RBME.2024.3376835","DOIUrl":"https://doi.org/10.1109/RBME.2024.3376835","url":null,"abstract":"<p><p>Alzheimer's disease (AD) progressively impairs the memory and thinking skills of patients, resulting in a significant global economic and social burden each year. However, diagnosis of this neurodegenerative disorder can be challenging, particularly in the early stages of developing cognitive decline. Current clinical techniques are expensive, laborious, and invasive, which hinders comprehensive studies on Alzheimer's biomarkers and the development of efficient devices for Point-of-Care testing (POCT) applications. To address these limitations, researchers have been investigating various biosensing techniques. Unfortunately, these methods have not been commercialized due to several drawbacks, such as low efficiency, reproducibility, and the lack of accurate identification of AD markers. In this review, we present diverse promising hallmarks of Alzheimer's disease identified in various biofluids and body behaviors. Additionally, we thoroughly discuss different biosensing mechanisms and the associated challenges in disease diagnosis. In each context, we highlight the potential of realizing new biosensors to study various features of the disease, facilitating its early diagnosis in POCT. This comprehensive study, focusing on recent efforts for different aspects of the disease and representing promising opportunities, aims to conduct the future trend toward developing a new generation of compact multipurpose devices that can address the challenges in the early detection of AD.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.6,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140121021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glucose Fuel Cells: Electricity from Blood Sugar. 葡萄糖燃料电池:利用血糖发电
IF 17.6 1区 工程技术
IEEE Reviews in Biomedical Engineering Pub Date : 2024-02-22 DOI: 10.1109/RBME.2024.3368662
Robert G Gloeb-McDonald, Gene Fridman
{"title":"Glucose Fuel Cells: Electricity from Blood Sugar.","authors":"Robert G Gloeb-McDonald, Gene Fridman","doi":"10.1109/RBME.2024.3368662","DOIUrl":"https://doi.org/10.1109/RBME.2024.3368662","url":null,"abstract":"<p><p>Harvesting energy from the human body is an area of growing interest. While several techniques have been explored, the focus in the field is converging on using Glucose Fuel Cells (GFCs) that use glucose oxidation reactions at an anode and oxygen reduction reactions (ORRs) at a cathode to create a voltage gradient that can be stored as power. To facilitate these reactions, catalysts are immobilized at an anode and cathode that result in electrochemistry that typically produces two electrons, a water molecule, and gluconic acid. There are two competing classes of these catalysts: enzymes, which use organic proteins, and abiotic options, which use reactive metals. Enzymatic catalysts show better specificity towards glucose, whereas abiotic options show superior operational stability. The most advanced enzymatic test showed a maximum power density of 119 μW/cm<sup>2</sup> and an efficiency loss of 4% over 15 hours of operation. The best abiotic experiment resulted in 43 μW/cm<sup>2</sup> and exhibited no signs of performance loss after 140 hours. Given the range of existing implantable devices' power budget from 10μW to 100mW and expected operational duration of 10 years or more, GFCs hold promise, but considerable advances need to be made to translate this technology to practical applications.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.6,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139933396","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions. 乳腺癌成像中的深度学习:十年进展与未来方向》。
IF 17.6 1区 工程技术
IEEE Reviews in Biomedical Engineering Pub Date : 2024-01-24 DOI: 10.1109/RBME.2024.3357877
Luyang Luo, Xi Wang, Yi Lin, Xiaoqi Ma, Andong Tan, Ronald Chan, Varut Vardhanabhuti, Winnie Cw Chu, Kwang-Ting Cheng, Hao Chen
{"title":"Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions.","authors":"Luyang Luo, Xi Wang, Yi Lin, Xiaoqi Ma, Andong Tan, Ronald Chan, Varut Vardhanabhuti, Winnie Cw Chu, Kwang-Ting Cheng, Hao Chen","doi":"10.1109/RBME.2024.3357877","DOIUrl":"10.1109/RBME.2024.3357877","url":null,"abstract":"<p><p>Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. This paper provides an extensive review of deep learning-based breast cancer imaging research, covering studies on mammograms, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are elaborated and discussed. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.6,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139546507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in Microsphere-based Super-resolution Imaging. 基于微球的超分辨率成像技术的进展。
IF 17.6 1区 工程技术
IEEE Reviews in Biomedical Engineering Pub Date : 2024-01-19 DOI: 10.1109/RBME.2024.3355875
Neil Upreti, Geonsoo Jin, Joseph Rich, Ruoyu Zhong, John Mai, Chenglong Zhao, Tony Jun Huang
{"title":"Advances in Microsphere-based Super-resolution Imaging.","authors":"Neil Upreti, Geonsoo Jin, Joseph Rich, Ruoyu Zhong, John Mai, Chenglong Zhao, Tony Jun Huang","doi":"10.1109/RBME.2024.3355875","DOIUrl":"10.1109/RBME.2024.3355875","url":null,"abstract":"<p><p>Techniques to resolve images beyond the diffraction limit of light with a large field of view (FOV) are necessary to foster progress in various fields such as cell and molecular biology, biophysics, and nanotechnology, where nanoscale resolution is crucial for understanding the intricate details of large-scale molecular interactions. Although several means of achieving super-resolutions exist, they are often hindered by factors such as high costs, significant complexity, lengthy processing times, and the classical tradeoff between image resolution and FOV. Microsphere-based super-resolution imaging has emerged as a promising approach to address these limitations. In this review, we delve into the theoretical underpinnings of microsphere-based imaging and the associated photonic nanojet. This is followed by a comprehensive exploration of various microsphere-based imaging techniques, encompassing static imaging, mechanical scanning, optical scanning, and acoustofluidic scanning methodologies. This review concludes with a forward-looking perspective on the potential applications and future scientific directions of this innovative technology.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.6,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139503074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Engineering in Medicine and Biology Society Information IEEE 医学与生物学工程学会信息
IF 17.6 1区 工程技术
IEEE Reviews in Biomedical Engineering Pub Date : 2024-01-12 DOI: 10.1109/RBME.2023.3333510
{"title":"IEEE Engineering in Medicine and Biology Society Information","authors":"","doi":"10.1109/RBME.2023.3333510","DOIUrl":"https://doi.org/10.1109/RBME.2023.3333510","url":null,"abstract":"","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"17 ","pages":"C2-C2"},"PeriodicalIF":17.6,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10398579","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139434807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Reviews in Biomedical Engineering (R-BME) Information IEEE 生物医学工程评论 (R-BME) 信息
IF 17.6 1区 工程技术
IEEE Reviews in Biomedical Engineering Pub Date : 2024-01-12 DOI: 10.1109/RBME.2023.3333516
{"title":"IEEE Reviews in Biomedical Engineering (R-BME) Information","authors":"","doi":"10.1109/RBME.2023.3333516","DOIUrl":"https://doi.org/10.1109/RBME.2023.3333516","url":null,"abstract":"","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"17 ","pages":"C3-C3"},"PeriodicalIF":17.6,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10398567","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139434712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review of Current Control and Decoupling Methods for MRI Transmit Arrays. 核磁共振成像发射阵列的电流控制和去耦方法综述。
IF 17.6 1区 工程技术
IEEE Reviews in Biomedical Engineering Pub Date : 2024-01-09 DOI: 10.1109/RBME.2024.3351713
Jiaming Cui, Neal A Hollingsworth, Steven M Wright
{"title":"A Review of Current Control and Decoupling Methods for MRI Transmit Arrays.","authors":"Jiaming Cui, Neal A Hollingsworth, Steven M Wright","doi":"10.1109/RBME.2024.3351713","DOIUrl":"10.1109/RBME.2024.3351713","url":null,"abstract":"<p><p>The shortened radio frequency wavelength in high field MRI makes it challenging to create a uniform excitation pattern over a large field of view, or to achieve satisfactory transmission efficiency at a local area. Transmit arrays are one tool that can be used to create a desired excitation pattern. To be effective, it is important to be able to control the current amplitude and phase at the array elements. The control of the current may get complicated by the coil coupling in many applications. Various methods have been proposed to achieve current control, either in the presence of coupling, or by effectively decouple the array elements. These methods are applied in different subsystems in the RF transmission chain: coil; coil-amplifier interface; amplifier, etc. In this review paper, we provide an overview of the various approaches and aspects of transmit current control and decoupling.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.6,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139404646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: On the Writing of a Scientific Review Article 社论:关于科学评论文章的写作。
IF 17.6 1区 工程技术
IEEE Reviews in Biomedical Engineering Pub Date : 2023-11-13 DOI: 10.1109/RBME.2023.3332164
Bin He
{"title":"Editorial: On the Writing of a Scientific Review Article","authors":"Bin He","doi":"10.1109/RBME.2023.3332164","DOIUrl":"10.1109/RBME.2023.3332164","url":null,"abstract":"2023 has been a year of growth and transformation for IEEE Reviews in Biomedical Engineering (RBME). Thanks to our authors, reviewers, and editorial board members, RBME received strong metrics on Impact Factor and CiteScore reaching 17.6 and 27.8 respectively, which places RBME in the top 3 according to the Impact Factor, and the top 4 according to the CiteScore in all Biomedical Engineering Journals/Publications. We have also observed substantially increasing submissions in the past year. To better serve our authors, we have implemented a screening process to quickly communicate the outcome of assessment, and allow the authors to submit manuscripts which do not fit the scope or have a low chance of passing through the highly selective review process, to find a more suitable journal in a timely manner.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"17 ","pages":"3-3"},"PeriodicalIF":17.6,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10315188","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92156913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信