Xiang Li, Lin Zhao, Lu Zhang, Zihao Wu, Zhengliang Liu, Hanqi Jiang, Chao Cao, Shaochen Xu, Yiwei Li, Haixing Dai, Yixuan Yuan, Jun Liu, Gang Li, Dajiang Zhu, Pingkun Yan, Quanzheng Li, Wei Liu, Tianming Liu, Dinggang Shen
{"title":"Artificial General Intelligence for Medical Imaging Analysis.","authors":"Xiang Li, Lin Zhao, Lu Zhang, Zihao Wu, Zhengliang Liu, Hanqi Jiang, Chao Cao, Shaochen Xu, Yiwei Li, Haixing Dai, Yixuan Yuan, Jun Liu, Gang Li, Dajiang Zhu, Pingkun Yan, Quanzheng Li, Wei Liu, Tianming Liu, Dinggang Shen","doi":"10.1109/RBME.2024.3493775","DOIUrl":null,"url":null,"abstract":"<p><p>Large-scale Artificial General Intelligence (AGI) models, including Large Language Models (LLMs) such as ChatGPT/GPT-4, have achieved unprecedented success in a variety of general domain tasks. Yet, when applied directly to specialized domains like medical imaging, which require in-depth expertise, these models face notable challenges arising from the medical field's inherent complexities and unique characteristics. In this review, we delve into the potential applications of AGI models in medical imaging and healthcare, with a primary focus on LLMs, Large Vision Models, and Large Multimodal Models. We provide a thorough overview of the key features and enabling techniques of LLMs and AGI, and further examine the roadmaps guiding the evolution and implementation of AGI models in the medical sector, summarizing their present applications, potentialities, and associated challenges. In addition, we highlight potential future research directions, offering a holistic view on upcoming ventures. This comprehensive review aims to offer insights into the future implications of AGI in medical imaging, healthcare, and beyond.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":17.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/RBME.2024.3493775","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Large-scale Artificial General Intelligence (AGI) models, including Large Language Models (LLMs) such as ChatGPT/GPT-4, have achieved unprecedented success in a variety of general domain tasks. Yet, when applied directly to specialized domains like medical imaging, which require in-depth expertise, these models face notable challenges arising from the medical field's inherent complexities and unique characteristics. In this review, we delve into the potential applications of AGI models in medical imaging and healthcare, with a primary focus on LLMs, Large Vision Models, and Large Multimodal Models. We provide a thorough overview of the key features and enabling techniques of LLMs and AGI, and further examine the roadmaps guiding the evolution and implementation of AGI models in the medical sector, summarizing their present applications, potentialities, and associated challenges. In addition, we highlight potential future research directions, offering a holistic view on upcoming ventures. This comprehensive review aims to offer insights into the future implications of AGI in medical imaging, healthcare, and beyond.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.