IEEE Reviews in Biomedical Engineering最新文献

筛选
英文 中文
IEEE Reviews in Biomedical Engineering (R-BME)
IF 17.2 1区 工程技术
IEEE Reviews in Biomedical Engineering Pub Date : 2025-01-28 DOI: 10.1109/RBME.2024.3518719
{"title":"IEEE Reviews in Biomedical Engineering (R-BME)","authors":"","doi":"10.1109/RBME.2024.3518719","DOIUrl":"https://doi.org/10.1109/RBME.2024.3518719","url":null,"abstract":"","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"18 ","pages":"C3-C3"},"PeriodicalIF":17.2,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10856219","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143361452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Harnessing Reviews to Advance Biomedical Engineering's New Horizons
IF 17.2 1区 工程技术
IEEE Reviews in Biomedical Engineering Pub Date : 2025-01-28 DOI: 10.1109/RBME.2024.3518852
Bin He
{"title":"Editorial: Harnessing Reviews to Advance Biomedical Engineering's New Horizons","authors":"Bin He","doi":"10.1109/RBME.2024.3518852","DOIUrl":"https://doi.org/10.1109/RBME.2024.3518852","url":null,"abstract":"","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"18 ","pages":"3-4"},"PeriodicalIF":17.2,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10856220","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Engineering in Medicine and Biology Society
IF 17.2 1区 工程技术
IEEE Reviews in Biomedical Engineering Pub Date : 2025-01-28 DOI: 10.1109/RBME.2024.3518715
{"title":"IEEE Engineering in Medicine and Biology Society","authors":"","doi":"10.1109/RBME.2024.3518715","DOIUrl":"https://doi.org/10.1109/RBME.2024.3518715","url":null,"abstract":"","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"18 ","pages":"C2-C2"},"PeriodicalIF":17.2,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10856213","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measures and Models of Brain-Heart Interactions.
IF 17.2 1区 工程技术
IEEE Reviews in Biomedical Engineering Pub Date : 2025-01-23 DOI: 10.1109/RBME.2025.3529363
Diego Candia-Rivera, Luca Faes, Fabrizio de Vico Fallani, Mario Chavez
{"title":"Measures and Models of Brain-Heart Interactions.","authors":"Diego Candia-Rivera, Luca Faes, Fabrizio de Vico Fallani, Mario Chavez","doi":"10.1109/RBME.2025.3529363","DOIUrl":"https://doi.org/10.1109/RBME.2025.3529363","url":null,"abstract":"<p><p>Exploring brain-heart interactions within various paradigms, including affective computing, human-computer interfaces, and sensorimotor evaluation, has demonstrated enormous potential in biomarker development and neuroscientific research. A range of techniques, from molecular to behavioral approaches, has been proposed to measure these interactions. Different frameworks use signal processing techniques, from estimating brain responses to individual heartbeats to interactions linking the heart to changes in brain organization. This review provides an overview of the most notable signal processing strategies currently used for measuring and modeling brain-heart interactions. It discusses their usability and highlights the main challenges that need to be addressed for future methodological developments. Current methodologies have deepened our understanding of the impact of physiological disruptions on brain-heart interactions, solidifying it as a biomarker. The vast outlook of these methods could provide tools for disease stratification in neurological and psychiatric disorders. As we tackle new methodological challenges, gaining a more profound understanding of how these interactions operate, we anticipate further insights into the role of peripheral neurons and the environmental input from the rest of the body in shaping brain functioning.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.2,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143543439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comprehensive Survey of Foundation Models in Medicine.
IF 17.2 1区 工程技术
IEEE Reviews in Biomedical Engineering Pub Date : 2025-01-20 DOI: 10.1109/RBME.2025.3531360
Wasif Khan, Seowung Leem, Kyle B See, Joshua K Wong, Shaoting Zhang, Ruogu Fang
{"title":"A Comprehensive Survey of Foundation Models in Medicine.","authors":"Wasif Khan, Seowung Leem, Kyle B See, Joshua K Wong, Shaoting Zhang, Ruogu Fang","doi":"10.1109/RBME.2025.3531360","DOIUrl":"10.1109/RBME.2025.3531360","url":null,"abstract":"<p><p>Foundation models (FMs) are large-scale deeplearning models that are developed using large datasets and self-supervised learning methods. These models serve as a base for different downstream tasks, including healthcare. FMs have been adopted with great success across various domains within healthcare. Existing healthcare-based surveys have not yet included all of these domains. Therefore, we provide a detailed survey of FMs in healthcare. We focus on the history, learning strategies, flagship models, applications, and challenges of FMs. We explore how FMs such as the BERT and GPT families are reshaping various healthcare domains, including clinical large language models, medical image analysis, and omics. Furthermore, we provide a detailed taxonomy of healthcare applications facilitated by FMs, such as clinical NLP, medical computer vision, graph learning, and other biology-related tasks. Despite the promising opportunities FMs provide, they also have several associated challenges, which are explained in detail. We also outline open research issues and potential lessons learned to provide researchers and practitioners with insights into the capabilities of FMs in healthcare to advance their deployment and mitigate associated risks.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.2,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143542877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Analysis of Intravascular OCT Images for Future Clinical Support: A Comprehensive Review. 血管内 OCT 图像的计算分析为未来临床提供支持:全面回顾
IF 17.2 1区 工程技术
IEEE Reviews in Biomedical Engineering Pub Date : 2025-01-16 DOI: 10.1109/RBME.2025.3530244
Juhwan Lee, Yazan Gharaibeh, Pengfei Dong, Luis A P Dallan, Gabriel T R Pereira, Justin N Kim, Ammar Hoori, Linxia Gu, Hiram G Bezerra, Bernardo Cortese, David L Wilson
{"title":"Computational Analysis of Intravascular OCT Images for Future Clinical Support: A Comprehensive Review.","authors":"Juhwan Lee, Yazan Gharaibeh, Pengfei Dong, Luis A P Dallan, Gabriel T R Pereira, Justin N Kim, Ammar Hoori, Linxia Gu, Hiram G Bezerra, Bernardo Cortese, David L Wilson","doi":"10.1109/RBME.2025.3530244","DOIUrl":"https://doi.org/10.1109/RBME.2025.3530244","url":null,"abstract":"<p><p>Over the past two decades, intravascular optical coherence tomography (IVOCT) has emerged as a promising tool for planning percutaneous coronary interventions (PCI), studying coronary artery disease, and assessing treatments. With its nearhistological resolution and optical contrast, IVOCT uniquely evaluates coronary plaque characteristics, enhancing the guidance of interventional procedures. Artificial intelligence (AI) techniques have been widely applied to IVOCT imaging, providing fast and accurate automated interpretation. These techniques hold significant potential for both clinical and research purposes. Clinically, automated analysis offers comprehensive assessments of coronary plaques, leading to better treatment decisions during PCI. For research, automated interpretation of IVOCT opens new avenues to understand the pathophysiology of coronary atherosclerosis. However, these techniques face several limitations, including issues related to spatial resolution, challenges in manual assessments, and the additional time required for these analyses. This review covers recent advancements and applications of AI techniques and computational simulation methods in IVOCT image analysis, including vessel wall segmentation, plaque characterization, stent analysis, and their clinical applications. Furthermore, we discuss the potential of AI-enhanced IVOCT analysis to facilitate personalized decision-making, potentially improving short- and long-term patient outcomes.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.2,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143543139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review of Artificial Intelligence in Lung Nodule Risk Assessment.
IF 17.2 1区 工程技术
IEEE Reviews in Biomedical Engineering Pub Date : 2025-01-15 DOI: 10.1109/RBME.2025.3528946
Ying Wei, Qing Zhou, Jiaojiao Wu, Xiaoxian Xu, Yaozong Gao, Lei Chen, Yiqiang Zhan, Xiang Sean Zhou, Feng Shi, Dinggang Shen
{"title":"Review of Artificial Intelligence in Lung Nodule Risk Assessment.","authors":"Ying Wei, Qing Zhou, Jiaojiao Wu, Xiaoxian Xu, Yaozong Gao, Lei Chen, Yiqiang Zhan, Xiang Sean Zhou, Feng Shi, Dinggang Shen","doi":"10.1109/RBME.2025.3528946","DOIUrl":"https://doi.org/10.1109/RBME.2025.3528946","url":null,"abstract":"<p><p>Lung cancer is the leading cause of cancerrelated mortality worldwide. In addition to localizing and segmenting lung nodules, a non-invasive risk assessment system can also help clinicians tailor treatment decisions in a timely manner, ultimately improving patient outcomes. Artificial intelligence (AI) technologies are increasingly being used in medical imaging to assess the risk of lung nodules, especially for malignancy classification. However, little research has been conducted on the assessment of other related risks. This work comprehensively reviews AI applications in lung nodule risk assessment, including malignancy diagnosis, pathological subtype assessment, metastasis risk evaluation, specific receptor expression identification, and disease progression tracking. It details common public databases used and state-of-the-art AI techniques, along with their benefits and challenges like data scarcity, generalizability, and interpretability. We anticipate that future research will tackle these issues, thereby increasing the improved interpretability and generalizability of AI methods in clinical workflows.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.2,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143543539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing Cardiac Organoid Engineering Through Application of Biophysical Forces
IF 17.2 1区 工程技术
IEEE Reviews in Biomedical Engineering Pub Date : 2024-12-09 DOI: 10.1109/RBME.2024.3514378
Adriana Blazeski;Guillermo García-Cardeña;Roger D. Kamm
{"title":"Advancing Cardiac Organoid Engineering Through Application of Biophysical Forces","authors":"Adriana Blazeski;Guillermo García-Cardeña;Roger D. Kamm","doi":"10.1109/RBME.2024.3514378","DOIUrl":"https://doi.org/10.1109/RBME.2024.3514378","url":null,"abstract":"Cardiac organoids represent an important bioengineering opportunity in the development of models to study human heart pathophysiology. By incorporating multiple cardiac cell types in three-dimensional culture and developmentally-guided biochemical signaling, cardiac organoids recapitulate numerous features of heart tissue. However, cardiac tissue also experiences a variety of mechanical forces as the heart develops and over the course of each contraction cycle. It is now clear that these forces impact cellular specification, phenotype, and function, and should be incorporated into the engineering of cardiac organoids in order to generate better models. In this review, we discuss strategies for engineering cardiac organoids and report the effects of organoid design on the function of cardiac cells. We then discuss the mechanical environment of the heart, including forces arising from tissue elasticity, contraction, blood flow, and stretch, and report on efforts to mimic these biophysical cues in cardiac organoids. Finally, we review emerging areas of cardiac organoid research, for the study of cardiac development, the formation of multi-organ models, and the simulation of the effects of spaceflight on cardiac tissue, and consider how these investigations might benefit from the inclusion of mechanical cues.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"18 ","pages":"211-230"},"PeriodicalIF":17.2,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Earable Multimodal Sensing and Stimulation: A Prospective Toward Unobtrusive Closed-Loop Biofeedback
IF 17.2 1区 工程技术
IEEE Reviews in Biomedical Engineering Pub Date : 2024-11-29 DOI: 10.1109/RBME.2024.3508713
Yuchen Xu;Abhinav Uppal;Min Suk Lee;Kuldeep Mahato;Brian L. Wuerstle;Muyang Lin;Omeed Djassemi;Tao Chen;Rui Lin;Akshay Paul;Soumil Jain;Florian Chapotot;Esra Tasali;Patrick Mercier;Sheng Xu;Joseph Wang;Gert Cauwenberghs
{"title":"Earable Multimodal Sensing and Stimulation: A Prospective Toward Unobtrusive Closed-Loop Biofeedback","authors":"Yuchen Xu;Abhinav Uppal;Min Suk Lee;Kuldeep Mahato;Brian L. Wuerstle;Muyang Lin;Omeed Djassemi;Tao Chen;Rui Lin;Akshay Paul;Soumil Jain;Florian Chapotot;Esra Tasali;Patrick Mercier;Sheng Xu;Joseph Wang;Gert Cauwenberghs","doi":"10.1109/RBME.2024.3508713","DOIUrl":"https://doi.org/10.1109/RBME.2024.3508713","url":null,"abstract":"The human ear has emerged as a bidirectional gateway to the brain's and body's signals. Recent advances in around-the-ear and in-ear sensors have enabled the assessment of biomarkers and physiomarkers derived from brain and cardiac activity using ear-electroencephalography (ear-EEG), photoplethysmography (ear-PPG), and chemical sensing of analytes from the ear, with ear-EEG having been taken beyond-the-lab to outer space. Parallel advances in non-invasive and minimally invasive brain stimulation techniques have leveraged the ear's access to two cranial nerves to modulate brain and body activity. The vestibulocochlear nerve stimulates the auditory cortex and limbic system with sound, while the auricular branch of the vagus nerve indirectly but significantly couples to the autonomic nervous system and cardiac output. Acoustic and current mode stimuli delivered using discreet and unobtrusive earables are an active area of research, aiming to make biofeedback and bioelectronic medicine deliverable outside of the clinic, with remote and continuous monitoring of therapeutic responsivity and long-term adaptation. Leveraging recent advances in ear-EEG, transcutaneous auricular vagus nerve stimulation (taVNS), and unobtrusive acoustic stimulation, we review accumulating evidence that combines their potential into an integrated earable platform for closed-loop multimodal sensing and neuromodulation, towards personalized and holistic therapies that are near, in- and around-the-ear.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"18 ","pages":"5-25"},"PeriodicalIF":17.2,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunomechanobiology: Engineering the Activation and Function of Immune Cells With the Mechanical Signal of Fluid Shear Stress
IF 17.2 1区 工程技术
IEEE Reviews in Biomedical Engineering Pub Date : 2024-11-22 DOI: 10.1109/RBME.2024.3505073
N. S. Sarna;N. M. Curry;E. Aalaei;B. G. Kaufman;M. R. King
{"title":"Immunomechanobiology: Engineering the Activation and Function of Immune Cells With the Mechanical Signal of Fluid Shear Stress","authors":"N. S. Sarna;N. M. Curry;E. Aalaei;B. G. Kaufman;M. R. King","doi":"10.1109/RBME.2024.3505073","DOIUrl":"https://doi.org/10.1109/RBME.2024.3505073","url":null,"abstract":"Immunomechanobiology, the study of how physical forces influence the behavior and function of immune cells, is a rapidly growing area of research. It is becoming increasingly recognized that mechanical stimuli, such as fluid shear forces, are a critical determinant of immune cell regulation. In this review, we discuss the principles and significance of various mechanical forces present within the human body, with a focus on fluid shear flow and its impact on immune cell activation and function. Moreover, we discuss engineering approaches used to study immune cell mechanobiology, and their implications in health and diseases such as cancer, autoimmune disorders, and infectious disease.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"18 ","pages":"231-249"},"PeriodicalIF":17.2,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10764720","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信