虚拟脑双胞胎原理与操作。

IF 17.2 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL
Meysam Hashemi, Damien Depannemaecker, Marisa Saggio, Paul Triebkorn, Giovanni Rabuffo, Jan Fousek, Abolfazl Ziaeemehr, Viktor Sip, Anastasios Athanasiadis, Martin Breyton, Marmaduke Woodman, Huifang Wang, Spase Petkoski, Pierpaolo Sorrentino, Viktor Jirsa
{"title":"虚拟脑双胞胎原理与操作。","authors":"Meysam Hashemi, Damien Depannemaecker, Marisa Saggio, Paul Triebkorn, Giovanni Rabuffo, Jan Fousek, Abolfazl Ziaeemehr, Viktor Sip, Anastasios Athanasiadis, Martin Breyton, Marmaduke Woodman, Huifang Wang, Spase Petkoski, Pierpaolo Sorrentino, Viktor Jirsa","doi":"10.1109/RBME.2025.3562951","DOIUrl":null,"url":null,"abstract":"<p><p>Current clinical methods often overlook individual variability by relying on population-wide trials, while mechanismbased trials remain underutilized in neuroscience due to the brain's complexity. This situation may change through the use of a Virtual Brain Twin (VBT), which is a personalized digital replica of an individual's brain, integrating structural and functional brain data into advanced computational models and inference algorithms. By bridging the gap between molecular mechanisms, whole-brain dynamics, and imaging data, VBTs enhance the understanding of (patho)physiological mechanisms, advancing insights into both healthy and disordered brain function. Central to VBT is the network modeling that couples mesoscopic representation of neuronal activity through white matter connectivity, enabling the simulation of brain dynamics at a network level. This transformative approach provides interpretable predictive capabilities, supporting clinicians in personalizing treatments and optimizing interventions. This Review outlines the key components of VBT development, covering the conceptual, mathematical, technical, and clinical aspects. We describe the stages of VBT construction-from anatomical coupling and modeling to simulation and Bayesian inference-and demonstrate their applications in resting-state, healthy aging, multiple sclerosis, and epilepsy. Finally, we discuss potential extensions to other neurological disorders, such as Parkinson's disease, and explore future applications in consciousness research and brain-computer interfaces, paving the way for advancements in personalized medicine and brainmachine integration.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.2000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Principles and Operation of Virtual Brain Twins.\",\"authors\":\"Meysam Hashemi, Damien Depannemaecker, Marisa Saggio, Paul Triebkorn, Giovanni Rabuffo, Jan Fousek, Abolfazl Ziaeemehr, Viktor Sip, Anastasios Athanasiadis, Martin Breyton, Marmaduke Woodman, Huifang Wang, Spase Petkoski, Pierpaolo Sorrentino, Viktor Jirsa\",\"doi\":\"10.1109/RBME.2025.3562951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current clinical methods often overlook individual variability by relying on population-wide trials, while mechanismbased trials remain underutilized in neuroscience due to the brain's complexity. This situation may change through the use of a Virtual Brain Twin (VBT), which is a personalized digital replica of an individual's brain, integrating structural and functional brain data into advanced computational models and inference algorithms. By bridging the gap between molecular mechanisms, whole-brain dynamics, and imaging data, VBTs enhance the understanding of (patho)physiological mechanisms, advancing insights into both healthy and disordered brain function. Central to VBT is the network modeling that couples mesoscopic representation of neuronal activity through white matter connectivity, enabling the simulation of brain dynamics at a network level. This transformative approach provides interpretable predictive capabilities, supporting clinicians in personalizing treatments and optimizing interventions. This Review outlines the key components of VBT development, covering the conceptual, mathematical, technical, and clinical aspects. We describe the stages of VBT construction-from anatomical coupling and modeling to simulation and Bayesian inference-and demonstrate their applications in resting-state, healthy aging, multiple sclerosis, and epilepsy. Finally, we discuss potential extensions to other neurological disorders, such as Parkinson's disease, and explore future applications in consciousness research and brain-computer interfaces, paving the way for advancements in personalized medicine and brainmachine integration.</p>\",\"PeriodicalId\":39235,\"journal\":{\"name\":\"IEEE Reviews in Biomedical Engineering\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/RBME.2025.3562951\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/RBME.2025.3562951","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目前的临床方法往往依赖于人群范围的试验而忽略了个体的可变性,而由于大脑的复杂性,基于机制的试验在神经科学中仍未得到充分利用。这种情况可以通过使用虚拟大脑双胞胎(VBT)来改变,这是一种个性化的个人大脑数字复制品,将大脑的结构和功能数据集成到先进的计算模型和推理算法中。通过弥合分子机制、全脑动力学和成像数据之间的差距,vvb增强了对(病理)生理机制的理解,推进了对健康和紊乱大脑功能的认识。VBT的核心是网络建模,通过白质连接耦合神经元活动的介观表征,从而在网络水平上模拟大脑动力学。这种变革性方法提供了可解释的预测能力,支持临床医生个性化治疗和优化干预措施。本综述概述了VBT发展的关键组成部分,包括概念、数学、技术和临床方面。我们描述了VBT构建的各个阶段——从解剖耦合和建模到仿真和贝叶斯推理——并展示了它们在静息状态、健康衰老、多发性硬化症和癫痫中的应用。最后,我们讨论了其他神经系统疾病的潜在扩展,如帕金森病,并探索了未来在意识研究和脑机接口方面的应用,为个性化医疗和脑机集成的进步铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Principles and Operation of Virtual Brain Twins.

Current clinical methods often overlook individual variability by relying on population-wide trials, while mechanismbased trials remain underutilized in neuroscience due to the brain's complexity. This situation may change through the use of a Virtual Brain Twin (VBT), which is a personalized digital replica of an individual's brain, integrating structural and functional brain data into advanced computational models and inference algorithms. By bridging the gap between molecular mechanisms, whole-brain dynamics, and imaging data, VBTs enhance the understanding of (patho)physiological mechanisms, advancing insights into both healthy and disordered brain function. Central to VBT is the network modeling that couples mesoscopic representation of neuronal activity through white matter connectivity, enabling the simulation of brain dynamics at a network level. This transformative approach provides interpretable predictive capabilities, supporting clinicians in personalizing treatments and optimizing interventions. This Review outlines the key components of VBT development, covering the conceptual, mathematical, technical, and clinical aspects. We describe the stages of VBT construction-from anatomical coupling and modeling to simulation and Bayesian inference-and demonstrate their applications in resting-state, healthy aging, multiple sclerosis, and epilepsy. Finally, we discuss potential extensions to other neurological disorders, such as Parkinson's disease, and explore future applications in consciousness research and brain-computer interfaces, paving the way for advancements in personalized medicine and brainmachine integration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Reviews in Biomedical Engineering
IEEE Reviews in Biomedical Engineering Engineering-Biomedical Engineering
CiteScore
31.70
自引率
0.60%
发文量
93
期刊介绍: IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信