Meysam Hashemi, Damien Depannemaecker, Marisa Saggio, Paul Triebkorn, Giovanni Rabuffo, Jan Fousek, Abolfazl Ziaeemehr, Viktor Sip, Anastasios Athanasiadis, Martin Breyton, Marmaduke Woodman, Huifang Wang, Spase Petkoski, Pierpaolo Sorrentino, Viktor Jirsa
{"title":"虚拟脑双胞胎原理与操作。","authors":"Meysam Hashemi, Damien Depannemaecker, Marisa Saggio, Paul Triebkorn, Giovanni Rabuffo, Jan Fousek, Abolfazl Ziaeemehr, Viktor Sip, Anastasios Athanasiadis, Martin Breyton, Marmaduke Woodman, Huifang Wang, Spase Petkoski, Pierpaolo Sorrentino, Viktor Jirsa","doi":"10.1109/RBME.2025.3562951","DOIUrl":null,"url":null,"abstract":"<p><p>Current clinical methods often overlook individual variability by relying on population-wide trials, while mechanismbased trials remain underutilized in neuroscience due to the brain's complexity. This situation may change through the use of a Virtual Brain Twin (VBT), which is a personalized digital replica of an individual's brain, integrating structural and functional brain data into advanced computational models and inference algorithms. By bridging the gap between molecular mechanisms, whole-brain dynamics, and imaging data, VBTs enhance the understanding of (patho)physiological mechanisms, advancing insights into both healthy and disordered brain function. Central to VBT is the network modeling that couples mesoscopic representation of neuronal activity through white matter connectivity, enabling the simulation of brain dynamics at a network level. This transformative approach provides interpretable predictive capabilities, supporting clinicians in personalizing treatments and optimizing interventions. This Review outlines the key components of VBT development, covering the conceptual, mathematical, technical, and clinical aspects. We describe the stages of VBT construction-from anatomical coupling and modeling to simulation and Bayesian inference-and demonstrate their applications in resting-state, healthy aging, multiple sclerosis, and epilepsy. Finally, we discuss potential extensions to other neurological disorders, such as Parkinson's disease, and explore future applications in consciousness research and brain-computer interfaces, paving the way for advancements in personalized medicine and brainmachine integration.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.2000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Principles and Operation of Virtual Brain Twins.\",\"authors\":\"Meysam Hashemi, Damien Depannemaecker, Marisa Saggio, Paul Triebkorn, Giovanni Rabuffo, Jan Fousek, Abolfazl Ziaeemehr, Viktor Sip, Anastasios Athanasiadis, Martin Breyton, Marmaduke Woodman, Huifang Wang, Spase Petkoski, Pierpaolo Sorrentino, Viktor Jirsa\",\"doi\":\"10.1109/RBME.2025.3562951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current clinical methods often overlook individual variability by relying on population-wide trials, while mechanismbased trials remain underutilized in neuroscience due to the brain's complexity. This situation may change through the use of a Virtual Brain Twin (VBT), which is a personalized digital replica of an individual's brain, integrating structural and functional brain data into advanced computational models and inference algorithms. By bridging the gap between molecular mechanisms, whole-brain dynamics, and imaging data, VBTs enhance the understanding of (patho)physiological mechanisms, advancing insights into both healthy and disordered brain function. Central to VBT is the network modeling that couples mesoscopic representation of neuronal activity through white matter connectivity, enabling the simulation of brain dynamics at a network level. This transformative approach provides interpretable predictive capabilities, supporting clinicians in personalizing treatments and optimizing interventions. This Review outlines the key components of VBT development, covering the conceptual, mathematical, technical, and clinical aspects. We describe the stages of VBT construction-from anatomical coupling and modeling to simulation and Bayesian inference-and demonstrate their applications in resting-state, healthy aging, multiple sclerosis, and epilepsy. Finally, we discuss potential extensions to other neurological disorders, such as Parkinson's disease, and explore future applications in consciousness research and brain-computer interfaces, paving the way for advancements in personalized medicine and brainmachine integration.</p>\",\"PeriodicalId\":39235,\"journal\":{\"name\":\"IEEE Reviews in Biomedical Engineering\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/RBME.2025.3562951\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/RBME.2025.3562951","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Current clinical methods often overlook individual variability by relying on population-wide trials, while mechanismbased trials remain underutilized in neuroscience due to the brain's complexity. This situation may change through the use of a Virtual Brain Twin (VBT), which is a personalized digital replica of an individual's brain, integrating structural and functional brain data into advanced computational models and inference algorithms. By bridging the gap between molecular mechanisms, whole-brain dynamics, and imaging data, VBTs enhance the understanding of (patho)physiological mechanisms, advancing insights into both healthy and disordered brain function. Central to VBT is the network modeling that couples mesoscopic representation of neuronal activity through white matter connectivity, enabling the simulation of brain dynamics at a network level. This transformative approach provides interpretable predictive capabilities, supporting clinicians in personalizing treatments and optimizing interventions. This Review outlines the key components of VBT development, covering the conceptual, mathematical, technical, and clinical aspects. We describe the stages of VBT construction-from anatomical coupling and modeling to simulation and Bayesian inference-and demonstrate their applications in resting-state, healthy aging, multiple sclerosis, and epilepsy. Finally, we discuss potential extensions to other neurological disorders, such as Parkinson's disease, and explore future applications in consciousness research and brain-computer interfaces, paving the way for advancements in personalized medicine and brainmachine integration.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.