Computational Analysis of Intravascular OCT Images for Future Clinical Support: A Comprehensive Review.

IF 17.2 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL
Juhwan Lee, Yazan Gharaibeh, Pengfei Dong, Luis A P Dallan, Gabriel T R Pereira, Justin N Kim, Ammar Hoori, Linxia Gu, Hiram G Bezerra, Bernardo Cortese, David L Wilson
{"title":"Computational Analysis of Intravascular OCT Images for Future Clinical Support: A Comprehensive Review.","authors":"Juhwan Lee, Yazan Gharaibeh, Pengfei Dong, Luis A P Dallan, Gabriel T R Pereira, Justin N Kim, Ammar Hoori, Linxia Gu, Hiram G Bezerra, Bernardo Cortese, David L Wilson","doi":"10.1109/RBME.2025.3530244","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past two decades, intravascular optical coherence tomography (IVOCT) has emerged as a promising tool for planning percutaneous coronary interventions (PCI), studying coronary artery disease, and assessing treatments. With its nearhistological resolution and optical contrast, IVOCT uniquely evaluates coronary plaque characteristics, enhancing the guidance of interventional procedures. Artificial intelligence (AI) techniques have been widely applied to IVOCT imaging, providing fast and accurate automated interpretation. These techniques hold significant potential for both clinical and research purposes. Clinically, automated analysis offers comprehensive assessments of coronary plaques, leading to better treatment decisions during PCI. For research, automated interpretation of IVOCT opens new avenues to understand the pathophysiology of coronary atherosclerosis. However, these techniques face several limitations, including issues related to spatial resolution, challenges in manual assessments, and the additional time required for these analyses. This review covers recent advancements and applications of AI techniques and computational simulation methods in IVOCT image analysis, including vessel wall segmentation, plaque characterization, stent analysis, and their clinical applications. Furthermore, we discuss the potential of AI-enhanced IVOCT analysis to facilitate personalized decision-making, potentially improving short- and long-term patient outcomes.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.2000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/RBME.2025.3530244","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past two decades, intravascular optical coherence tomography (IVOCT) has emerged as a promising tool for planning percutaneous coronary interventions (PCI), studying coronary artery disease, and assessing treatments. With its nearhistological resolution and optical contrast, IVOCT uniquely evaluates coronary plaque characteristics, enhancing the guidance of interventional procedures. Artificial intelligence (AI) techniques have been widely applied to IVOCT imaging, providing fast and accurate automated interpretation. These techniques hold significant potential for both clinical and research purposes. Clinically, automated analysis offers comprehensive assessments of coronary plaques, leading to better treatment decisions during PCI. For research, automated interpretation of IVOCT opens new avenues to understand the pathophysiology of coronary atherosclerosis. However, these techniques face several limitations, including issues related to spatial resolution, challenges in manual assessments, and the additional time required for these analyses. This review covers recent advancements and applications of AI techniques and computational simulation methods in IVOCT image analysis, including vessel wall segmentation, plaque characterization, stent analysis, and their clinical applications. Furthermore, we discuss the potential of AI-enhanced IVOCT analysis to facilitate personalized decision-making, potentially improving short- and long-term patient outcomes.

血管内 OCT 图像的计算分析为未来临床提供支持:全面回顾
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Reviews in Biomedical Engineering
IEEE Reviews in Biomedical Engineering Engineering-Biomedical Engineering
CiteScore
31.70
自引率
0.60%
发文量
93
期刊介绍: IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信