Daniel Ray;Tim Collins;Sandra I. Woolley;Prasad V. S. Ponnapalli
{"title":"A Review of Wearable Multi-Wavelength Photoplethysmography","authors":"Daniel Ray;Tim Collins;Sandra I. Woolley;Prasad V. S. Ponnapalli","doi":"10.1109/RBME.2021.3121476","DOIUrl":"10.1109/RBME.2021.3121476","url":null,"abstract":"Optical pulse detection ‘photoplethysmography’ (PPG) provides a means of low cost and unobtrusive physiological monitoring that is popular in many wearable devices. However, the accuracy, robustness and generalizability of single-wavelength PPG sensing are sensitive to biological characteristics as well as sensor configuration and placement; this is significant given the increasing adoption of single-wavelength wrist-worn PPG devices in clinical studies and healthcare. Since different wavelengths interact with the skin to varying degrees, researchers have explored the use of multi-wavelength PPG to improve sensing accuracy, robustness and generalizability. This paper contributes a novel and comprehensive state-of-the-art review of wearable multi-wavelength PPG sensing, encompassing motion artifact reduction and estimation of physiological parameters. The paper also encompasses theoretical details about multi-wavelength PPG sensing and the effects of biological characteristics. The review findings highlight the promising developments in motion artifact reduction using multi-wavelength approaches, the effects of skin temperature on PPG sensing, the need for improved diversity in PPG sensing studies and the lack of studies that investigate the combined effects of factors. Recommendations are made for the standardization and completeness of reporting in terms of study design, sensing technology and participant characteristics.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"16 ","pages":"136-151"},"PeriodicalIF":17.6,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9363994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Texture Analysis and Its Applications in Biomedical Imaging: A Survey","authors":"Maryam Khaksar Ghalati;Ana Nunes;Hugo Ferreira;Pedro Serranho;Rui Bernardes","doi":"10.1109/RBME.2021.3115703","DOIUrl":"10.1109/RBME.2021.3115703","url":null,"abstract":"Texture analysis describes a variety of image analysis techniques that quantify the variation in intensity and pattern. This paper provides an overview of several texture analysis approaches addressing the rationale supporting them, their advantages, drawbacks, and applications. This survey’s emphasis is in collecting and categorising over five decades of active research on texture analysis. Brief descriptions of different approaches are presented along with application examples. From a broad range of texture analysis applications, this survey’s final focus is on biomedical image analysis. An up-to-date list of biological tissues and organs in which disorders produce texture changes that may be used to spot disease onset and progression is provided. Finally, the role of texture analysis methods as biomarkers of disease is summarised.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"15 ","pages":"222-246"},"PeriodicalIF":17.6,"publicationDate":"2021-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39456318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Costanza Culmone;Fatih S. Yikilmaz;Fabian Trauzettel;Paul Breedveld
{"title":"Follow-The-Leader Mechanisms in Medical Devices: A Review on Scientific and Patent Literature","authors":"Costanza Culmone;Fatih S. Yikilmaz;Fabian Trauzettel;Paul Breedveld","doi":"10.1109/RBME.2021.3113395","DOIUrl":"10.1109/RBME.2021.3113395","url":null,"abstract":"Conventional medical instruments are not capable of passing through tortuous anatomy as required for natural orifice transluminal endoscopic surgery due to their rigid shaft designs. Nevertheless, developments in minimally invasive surgery are pushing medical devices to become more dexterous. Amongst devices with controllable flexibility, so-called Follow-The-Leader (FTL) devices possess motion capabilities to pass through confined spaces without interacting with anatomical structures. The goal of this literature study is to provide a comprehensive overview of medical devices with FTL motion. A scientific and patent literature search was performed in five databases (Scopus, PubMed, Web of Science, IEEExplore, Espacenet). Keywords were used to isolate FTL behavior in devices with medical applications. Ultimately, 35 unique devices were reviewed and categorized. Devices were allocated according to their design strategies to obtain the three fundamental sub-functions of FTL motion: \u0000<italic>steering</i>\u0000, (controlling the leader/end-effector orientation), \u0000<italic>propagation</i>\u0000, (advancing the device along a specific path), and \u0000<italic>conservation</i>\u0000 (memorizing the shape of the path taken by the device). A comparative analysis of the devices was carried out, showing the commonly used design choices for each sub-function and the different combinations. The advantages and disadvantages of the design aspects and an overview of their performance were provided. Devices that were initially assessed as ineligible were considered in a possible medical context or presented with FTL potential, broadening the classification. This review could aid in the development of a new generation of FTL devices by providing a comprehensive overview of the current solutions and stimulating the search for new ones.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"16 ","pages":"439-455"},"PeriodicalIF":17.6,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9415920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Antonia Molloy;Kirsten Beaumont;Ali Alyami;Mahmut Kirimi;Daniel Hoare;Nosrat Mirzai;Hadi Heidari;Srinjoy Mitra;Steve L. Neale;John R. Mercer
{"title":"Challenges to the Development of the Next Generation of Self-Reporting Cardiovascular Implantable Medical Devices","authors":"Antonia Molloy;Kirsten Beaumont;Ali Alyami;Mahmut Kirimi;Daniel Hoare;Nosrat Mirzai;Hadi Heidari;Srinjoy Mitra;Steve L. Neale;John R. Mercer","doi":"10.1109/RBME.2021.3110084","DOIUrl":"10.1109/RBME.2021.3110084","url":null,"abstract":"Cardiovascular disease (CVD) is a group of heart and vasculature conditions which are the leading form of mortality worldwide. Blood vessels can become narrowed, restricting blood flow, and drive the majority of hearts attacks and strokes. Reactive surgical interventions are frequently required; including percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG). Despite successful opening of vessels and restoration of blood flow, often in-stent restenosis (ISR) and graft failure can still occur, resulting in subsequent patient morbidity and mortality. A new generation of cardiovascular implants that have sensors and real-time monitoring capabilities are being developed to combat ISR and graft failure. Self-reporting stent/graft technology could enable precision medicine-based and predictive healthcare by detecting the earliest features of disease, even before symptoms occur. Bringing an implantable medical device with wireless electronic sensing capabilities to market is complex and often obstructive undertaking. This critical review analyses the obstacles that need to be overcome for self-reporting stents/grafts to be developed and provide a precision-medicine based healthcare for cardiovascular patients. Here we assess the latest research and technological advancement in the field, the current devices; including smart cardiovascular implantable biosensors and associated wireless data and power transfer solutions. We include an evaluation of devices that have reached clinical trials and the market potential for their end-user implementation.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"15 ","pages":"260-272"},"PeriodicalIF":17.6,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/4664312/9686800/09537680.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39417346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phenocopying Glioblastoma: A Review","authors":"Mariam-Eleni Oraiopoulou;Eleftheria Tzamali;Joseph Papamatheakis;Vangelis Sakkalis","doi":"10.1109/RBME.2021.3111744","DOIUrl":"10.1109/RBME.2021.3111744","url":null,"abstract":"The main reason why therapeutic schemes fail in Glioblastoma lies on its own peculiarities as a cancer and on our failure to fully decipher them. Fast tumor evolution, invasiveness and incomplete surgical resection contribute to disease recurrence, therapy resistance and high mortality. More faithful models must be developed to address Glioblastoma biology and better clinical guidance. Research studies are discussed in this review that: i) improve understanding and assessment of the growth mechanisms of Glioblastoma and ii) develop preclinical models (\u0000<italic>in vitro-in vivo-in silico</i>\u0000) that mimic patient's tumor (phenocopying) in order to provide better prediction of response to therapies.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"16 ","pages":"456-471"},"PeriodicalIF":17.6,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9720043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retinal OCT Image Registration: Methods and Applications","authors":"Lingjiao Pan;Xinjian Chen","doi":"10.1109/RBME.2021.3110958","DOIUrl":"10.1109/RBME.2021.3110958","url":null,"abstract":"Retinal image registration is a critical task in the diagnosis and treatment of various eye diseases. And as a relatively new imaging method, optical coherence tomography (OCT) has been widely used in the diagnosis of retinal diseases. This paper is devoted to retinal OCT image registration methods and their clinical applications. Registration methods including volumetric transformation-based registration methods and image features-based registration methods are systematically reviewed. Furthermore, to better understanding these methods, their applications in correcting scanning artifacts, reducing speckle noise, fusing and splicing images and evaluating longitudinal disease progression are studied as well. At the end of this paper, registration of retina with serious pathology and registration with deep learning technique are also discussed.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"16 ","pages":"307-318"},"PeriodicalIF":17.6,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9713296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Barvik;Martin Cerny;Marek Penhaker;Norbert Noury
{"title":"Noninvasive Continuous Blood Pressure Estimation From Pulse Transit Time: A Review of the Calibration Models","authors":"Daniel Barvik;Martin Cerny;Marek Penhaker;Norbert Noury","doi":"10.1109/RBME.2021.3109643","DOIUrl":"10.1109/RBME.2021.3109643","url":null,"abstract":"Noninvasive continuous blood pressure estimation is a promising alternative to minimally invasive blood pressure measurement using cuff and invasive catheter measurement, because it opens the way to both long-term and continuous blood pressure monitoring in ecological situation. The most current estimation algorithm is based on pulse transit time measurement where at least two measured signals need to be acquired. From the pulse transit time values, it is possible to estimate the continuous blood pressure for each cardiac cycle. This measurement highly depends on arterial properties which are not easily accessible with common measurement techniques; but these properties are needed as input for the estimation algorithm. With every change of input arterial properties, the error in the blood pressure estimation rises, thus a periodic calibration procedure is needed for error minimization. Recent research is focused on simplified constant arterial properties which are not constant over time and uses only linear model based on initial measurement. The elaboration of continuous calibration procedures, independent of recalibration measurement, is the key to improving the accuracy and robustness of noninvasive continuous blood pressure estimation. However, most models in literature are based on linear approximation and we discuss here the need for more complete calibration models.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"15 ","pages":"138-151"},"PeriodicalIF":17.6,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39388253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Review of Neuroimaging-Driven Brain Age Estimation for Identification of Brain Disorders and Health Conditions","authors":"Shiwangi Mishra;Iman Beheshti;Pritee Khanna","doi":"10.1109/RBME.2021.3107372","DOIUrl":"10.1109/RBME.2021.3107372","url":null,"abstract":"<italic>Background:</i>\u0000 Neuroimage analysis has made it possible to perform various anatomical analyses of the brain regions and helps detect different brain conditions/ disorders. Recently, neuroimaging-driven estimation of brain age is introduced as a robust biomarker for detecting different diseases and health conditions. \u0000<italic>Objective:</i>\u0000 To present a comprehensive review of brain age frameworks concerning: i) designing view: an overview of brain age frameworks based on image modality and methods used, and ii) clinical aspect: an overview of the application of brain age frameworks for detection of neurological disorders or health conditions. \u0000<italic>Methods:</i>\u0000 PubMed is explored to collect 136 articles from January 2010 to June 2021 using “Brain Age Estimation” and “Brain Imaging,” along with combinations of other radiological terms. \u0000<italic>Results & Conclusion:</i>\u0000 The studies presented in this review are evidence of using brain age estimation methods in detecting various brain diseases/conditions. The survey also highlights tools and methods for brain age estimation and addresses some future research directions.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"16 ","pages":"371-385"},"PeriodicalIF":17.6,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9713293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Noise Reduction in Cochlear Implant Signal Processing: A Review and Recent Developments","authors":"Fergal Henry;Martin Glavin;Edward Jones","doi":"10.1109/RBME.2021.3095428","DOIUrl":"10.1109/RBME.2021.3095428","url":null,"abstract":"Cochlear implant technology successfully restores hearing function to patients with sensory impairment. Although cochlear implant users generally hear well in quiet, they still find noisy conditions very challenging, hence the need to employ noise reduction algorithms in these systems to enhance the user experience\u0000<italic>.</i>\u0000 This paper reviews noise reduction algorithms in cochlear implants. Traditionally, such algorithms have been classified as either single- or multiple-channel, depending on the number of microphones they use. This review retains this general classification in looking at recent papers and extends it to reflect recent interest in machine learning techniques. The review concludes with consideration of promising future areas of research.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"16 ","pages":"319-331"},"PeriodicalIF":17.6,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9358756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Azam Ahmad Bakir;Amr Al Abed;Nigel H. Lovell;Socrates Dokos
{"title":"Multiphysics Computational Modelling of the Cardiac Ventricles","authors":"Azam Ahmad Bakir;Amr Al Abed;Nigel H. Lovell;Socrates Dokos","doi":"10.1109/RBME.2021.3093042","DOIUrl":"10.1109/RBME.2021.3093042","url":null,"abstract":"Development of cardiac multiphysics models has progressed significantly over the decades and simulations combining multiple physics interactions have become increasingly common. In this review, we summarise the progress in this field focusing on various approaches of integrating ventricular structures. electrophysiological properties, myocardial mechanics, as well as incorporating blood hemodynamics and the circulatory system. Common coupling approaches are discussed and compared, including the advantages and shortcomings of each. Currently used strategies for patient-specific implementations are highlighted and potential future improvements considered.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"15 ","pages":"309-324"},"PeriodicalIF":17.6,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39116893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}