{"title":"可穿戴印刷温度传感器:生物医学应用最新进展综述","authors":"Saleem Khan;Shaukat Ali;Arshad Khan;Amine Bermak","doi":"10.1109/RBME.2021.3121480","DOIUrl":null,"url":null,"abstract":"The rapid growth in wearable biosensing devices is driven by the strong desire to monitor the human health data and to predict the symptoms of chronic diseases at an early stage. Different sensors are developed for continuous monitoring of various biomarkers through wearable and implantable sensing patches. Temperature sensor has proved to be an important physiological parameter amongst the various wearable biosensing patches. This paper highlights the recent progresses made in printing of functional nanomaterials for developing wearable temperature sensors on polymeric substrates. A special focus is given to the advanced functional nanomaterials as well as their deposition through printing technologies. The geometric resolutions, shape, physical and electrical characteristics as well as sensing properties using different materials are compared and summarized. Wearability is the main concern of these newly developed sensors, which is summarized by discussing representative examples. Finally, the challenges concerning the stability, repeatability, reliability, sensitivity, linearity, ageing, and large-scale manufacturing are discussed with future outlook of the wearable systems.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"16 ","pages":"152-170"},"PeriodicalIF":17.2000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/4664312/10007429/09582797.pdf","citationCount":"7","resultStr":"{\"title\":\"Wearable Printed Temperature Sensors: Short Review on Latest Advances for Biomedical Applications\",\"authors\":\"Saleem Khan;Shaukat Ali;Arshad Khan;Amine Bermak\",\"doi\":\"10.1109/RBME.2021.3121480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid growth in wearable biosensing devices is driven by the strong desire to monitor the human health data and to predict the symptoms of chronic diseases at an early stage. Different sensors are developed for continuous monitoring of various biomarkers through wearable and implantable sensing patches. Temperature sensor has proved to be an important physiological parameter amongst the various wearable biosensing patches. This paper highlights the recent progresses made in printing of functional nanomaterials for developing wearable temperature sensors on polymeric substrates. A special focus is given to the advanced functional nanomaterials as well as their deposition through printing technologies. The geometric resolutions, shape, physical and electrical characteristics as well as sensing properties using different materials are compared and summarized. Wearability is the main concern of these newly developed sensors, which is summarized by discussing representative examples. Finally, the challenges concerning the stability, repeatability, reliability, sensitivity, linearity, ageing, and large-scale manufacturing are discussed with future outlook of the wearable systems.\",\"PeriodicalId\":39235,\"journal\":{\"name\":\"IEEE Reviews in Biomedical Engineering\",\"volume\":\"16 \",\"pages\":\"152-170\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/4664312/10007429/09582797.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9582797/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9582797/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Wearable Printed Temperature Sensors: Short Review on Latest Advances for Biomedical Applications
The rapid growth in wearable biosensing devices is driven by the strong desire to monitor the human health data and to predict the symptoms of chronic diseases at an early stage. Different sensors are developed for continuous monitoring of various biomarkers through wearable and implantable sensing patches. Temperature sensor has proved to be an important physiological parameter amongst the various wearable biosensing patches. This paper highlights the recent progresses made in printing of functional nanomaterials for developing wearable temperature sensors on polymeric substrates. A special focus is given to the advanced functional nanomaterials as well as their deposition through printing technologies. The geometric resolutions, shape, physical and electrical characteristics as well as sensing properties using different materials are compared and summarized. Wearability is the main concern of these newly developed sensors, which is summarized by discussing representative examples. Finally, the challenges concerning the stability, repeatability, reliability, sensitivity, linearity, ageing, and large-scale manufacturing are discussed with future outlook of the wearable systems.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.