{"title":"Retinal OCT Image Registration: Methods and Applications","authors":"Lingjiao Pan;Xinjian Chen","doi":"10.1109/RBME.2021.3110958","DOIUrl":null,"url":null,"abstract":"Retinal image registration is a critical task in the diagnosis and treatment of various eye diseases. And as a relatively new imaging method, optical coherence tomography (OCT) has been widely used in the diagnosis of retinal diseases. This paper is devoted to retinal OCT image registration methods and their clinical applications. Registration methods including volumetric transformation-based registration methods and image features-based registration methods are systematically reviewed. Furthermore, to better understanding these methods, their applications in correcting scanning artifacts, reducing speckle noise, fusing and splicing images and evaluating longitudinal disease progression are studied as well. At the end of this paper, registration of retina with serious pathology and registration with deep learning technique are also discussed.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"16 ","pages":"307-318"},"PeriodicalIF":17.2000,"publicationDate":"2021-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/9531445/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 9
Abstract
Retinal image registration is a critical task in the diagnosis and treatment of various eye diseases. And as a relatively new imaging method, optical coherence tomography (OCT) has been widely used in the diagnosis of retinal diseases. This paper is devoted to retinal OCT image registration methods and their clinical applications. Registration methods including volumetric transformation-based registration methods and image features-based registration methods are systematically reviewed. Furthermore, to better understanding these methods, their applications in correcting scanning artifacts, reducing speckle noise, fusing and splicing images and evaluating longitudinal disease progression are studied as well. At the end of this paper, registration of retina with serious pathology and registration with deep learning technique are also discussed.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.