Wasif Khan, Seowung Leem, Kyle B See, Joshua K Wong, Shaoting Zhang, Ruogu Fang
{"title":"A Comprehensive Survey of Foundation Models in Medicine.","authors":"Wasif Khan, Seowung Leem, Kyle B See, Joshua K Wong, Shaoting Zhang, Ruogu Fang","doi":"10.1109/RBME.2025.3531360","DOIUrl":null,"url":null,"abstract":"<p><p>Foundation models (FMs) are large-scale deep learning models trained on massive datasets, often using self-supervised learning techniques. These models serve as a versatile base for a wide range of downstream tasks, including those in medicine and healthcare. FMs have demonstrated remarkable success across multiple healthcare domains. However, existing surveys in this field do not comprehensively cover all areas where FMs have made significant strides. In this survey, we present a comprehensive review of FMs in medicine, focusing on their evolution, learning strategies, flagship models, applications, and associated challenges. We examine how prominent FMs, such as the BERT and GPT families, are transforming various aspects of healthcare, including clinical large language models, medical image analysis, and omics research. Additionally, we provide a detailed taxonomy of FM-enabled healthcare applications, spanning clinical natural language processing, medical computer vision, graph learning, and other biology- and omics-related tasks. Despite the transformative potential of FMs, they also pose unique challenges. This survey delves into these challenges and highlights open research questions and lessons learned to guide researchers and practitioners. Our goal is to provide valuable insights into the capabilities of FMs in health, facilitating responsible deployment and mitigating associated risks.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.2000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/RBME.2025.3531360","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Foundation models (FMs) are large-scale deep learning models trained on massive datasets, often using self-supervised learning techniques. These models serve as a versatile base for a wide range of downstream tasks, including those in medicine and healthcare. FMs have demonstrated remarkable success across multiple healthcare domains. However, existing surveys in this field do not comprehensively cover all areas where FMs have made significant strides. In this survey, we present a comprehensive review of FMs in medicine, focusing on their evolution, learning strategies, flagship models, applications, and associated challenges. We examine how prominent FMs, such as the BERT and GPT families, are transforming various aspects of healthcare, including clinical large language models, medical image analysis, and omics research. Additionally, we provide a detailed taxonomy of FM-enabled healthcare applications, spanning clinical natural language processing, medical computer vision, graph learning, and other biology- and omics-related tasks. Despite the transformative potential of FMs, they also pose unique challenges. This survey delves into these challenges and highlights open research questions and lessons learned to guide researchers and practitioners. Our goal is to provide valuable insights into the capabilities of FMs in health, facilitating responsible deployment and mitigating associated risks.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.