Diego Candia-Rivera, Luca Faes, Fabrizio De Vico Fallani, Mario Chavez
{"title":"Measures and Models of Brain-Heart Interactions.","authors":"Diego Candia-Rivera, Luca Faes, Fabrizio De Vico Fallani, Mario Chavez","doi":"10.1109/RBME.2025.3529363","DOIUrl":null,"url":null,"abstract":"<p><p>Exploring brain-heart interactions within various paradigms, including affective computing, human-computer interfaces, and sensorimotor evaluation, has demonstrated enormous potential in biomarker development and neuroscientific research. A range of techniques, from molecular to behavioral approaches, has been proposed to measure these interactions. Different frameworks use signal processing techniques, from estimating brain responses to individual heartbeats to interactions linking the heart to changes in brain organization. This review provides an overview of the most notable signal processing strategies currently used for measuring and modeling brain-heart interactions. It discusses their usability and highlights the main challenges that need to be addressed for future methodological developments. Current methodologies have deepened our understanding of the impact of physiological disruptions on brain-heart interactions, solidifying it as a biomarker. The vast outlook of these methods could provide tools for disease stratification in neurological and psychiatric disorders. As we tackle new methodological challenges, gaining a more profound understanding of how these interactions operate, we anticipate further insights into the role of peripheral neurons and the environmental input from the rest of the body in shaping brain functioning.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/RBME.2025.3529363","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Exploring brain-heart interactions within various paradigms, including affective computing, human-computer interfaces, and sensorimotor evaluation, has demonstrated enormous potential in biomarker development and neuroscientific research. A range of techniques, from molecular to behavioral approaches, has been proposed to measure these interactions. Different frameworks use signal processing techniques, from estimating brain responses to individual heartbeats to interactions linking the heart to changes in brain organization. This review provides an overview of the most notable signal processing strategies currently used for measuring and modeling brain-heart interactions. It discusses their usability and highlights the main challenges that need to be addressed for future methodological developments. Current methodologies have deepened our understanding of the impact of physiological disruptions on brain-heart interactions, solidifying it as a biomarker. The vast outlook of these methods could provide tools for disease stratification in neurological and psychiatric disorders. As we tackle new methodological challenges, gaining a more profound understanding of how these interactions operate, we anticipate further insights into the role of peripheral neurons and the environmental input from the rest of the body in shaping brain functioning.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.