{"title":"呼出气体分析:从实验室测试到穿戴式传感。","authors":"Wenzheng Heng, Shukun Yin, Yonglin Chen, Wei Gao","doi":"10.1109/RBME.2024.3481360","DOIUrl":null,"url":null,"abstract":"<p><p>Breath analysis and monitoring have emerged as pivotal components in both clinical research and daily health management, particularly in addressing the global health challenges posed by respiratory and metabolic disorders. The advancement of breath analysis strategies necessitates a multidisciplinary approach, seamlessly integrating expertise from medicine, biology, engineering, and materials science. Recent innovations in laboratory methodologies and wearable sensing technologies have ushered in an era of precise, real-time, and in situ breath analysis and monitoring. This comprehensive review elucidates the physical and chemical aspects of breath analysis, encompassing respiratory parameters and both volatile and non-volatile constituents. It emphasizes their physiological and clinical significance, while also exploring cutting-edge laboratory testing techniques and state-of-the-art wearable devices. Furthermore, the review delves into the application of sophisticated data processing technologies in the burgeoning field of breathomics and examines the potential of breath control in human-machine interaction paradigms. Additionally, it provides insights into the challenges of translating innovative laboratory and wearable concepts into mainstream clinical and daily practice. Continued innovation and interdisciplinary collaboration will drive progress in breath analysis, potentially revolutionizing personalized medicine through entirely non-invasive breath methodology.</p>","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":17.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exhaled Breath Analysis: from Laboratory Test to Wearable Sensing.\",\"authors\":\"Wenzheng Heng, Shukun Yin, Yonglin Chen, Wei Gao\",\"doi\":\"10.1109/RBME.2024.3481360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breath analysis and monitoring have emerged as pivotal components in both clinical research and daily health management, particularly in addressing the global health challenges posed by respiratory and metabolic disorders. The advancement of breath analysis strategies necessitates a multidisciplinary approach, seamlessly integrating expertise from medicine, biology, engineering, and materials science. Recent innovations in laboratory methodologies and wearable sensing technologies have ushered in an era of precise, real-time, and in situ breath analysis and monitoring. This comprehensive review elucidates the physical and chemical aspects of breath analysis, encompassing respiratory parameters and both volatile and non-volatile constituents. It emphasizes their physiological and clinical significance, while also exploring cutting-edge laboratory testing techniques and state-of-the-art wearable devices. Furthermore, the review delves into the application of sophisticated data processing technologies in the burgeoning field of breathomics and examines the potential of breath control in human-machine interaction paradigms. Additionally, it provides insights into the challenges of translating innovative laboratory and wearable concepts into mainstream clinical and daily practice. Continued innovation and interdisciplinary collaboration will drive progress in breath analysis, potentially revolutionizing personalized medicine through entirely non-invasive breath methodology.</p>\",\"PeriodicalId\":39235,\"journal\":{\"name\":\"IEEE Reviews in Biomedical Engineering\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/RBME.2024.3481360\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/RBME.2024.3481360","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Exhaled Breath Analysis: from Laboratory Test to Wearable Sensing.
Breath analysis and monitoring have emerged as pivotal components in both clinical research and daily health management, particularly in addressing the global health challenges posed by respiratory and metabolic disorders. The advancement of breath analysis strategies necessitates a multidisciplinary approach, seamlessly integrating expertise from medicine, biology, engineering, and materials science. Recent innovations in laboratory methodologies and wearable sensing technologies have ushered in an era of precise, real-time, and in situ breath analysis and monitoring. This comprehensive review elucidates the physical and chemical aspects of breath analysis, encompassing respiratory parameters and both volatile and non-volatile constituents. It emphasizes their physiological and clinical significance, while also exploring cutting-edge laboratory testing techniques and state-of-the-art wearable devices. Furthermore, the review delves into the application of sophisticated data processing technologies in the burgeoning field of breathomics and examines the potential of breath control in human-machine interaction paradigms. Additionally, it provides insights into the challenges of translating innovative laboratory and wearable concepts into mainstream clinical and daily practice. Continued innovation and interdisciplinary collaboration will drive progress in breath analysis, potentially revolutionizing personalized medicine through entirely non-invasive breath methodology.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.