Utilizing Neurons to Interrogate Cancer: Integrative Analysis of Cancer Omics Data With Deep Learning Models

IF 17.2 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL
Raid Halawani;Michael Buchert;Yi-Ping Phoebe Chen
{"title":"Utilizing Neurons to Interrogate Cancer: Integrative Analysis of Cancer Omics Data With Deep Learning Models","authors":"Raid Halawani;Michael Buchert;Yi-Ping Phoebe Chen","doi":"10.1109/RBME.2024.3503761","DOIUrl":null,"url":null,"abstract":"Genomics plays an essential role in the early detection, classification, and targeted cancer therapy based on the analysis of precise alterations at the molecular level. Using the most reliable approach is essential for the exact interrogation and cross-examination of complex and multi-high-dimensional “Multi-omics” cancer genomics data. In recent years, deep learning has been successfully utilized to deal with large cancer genomics data and has the potential to transform predictive biology. This review aims to explore the recent advancements in the application of deep learning models in basic cancer omics research, including different methodologies for the interrogation of bulk cancer omics data and the importance of cross-platform data integration. The paper provides insights into advantages, limitations, potential for improvement, research gaps, future direction, and an in-depth comparison of the models currently used in the field of cancer genomics, highlighting the crucial need for collaboration and interdisciplinary research in the field.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":"18 ","pages":"281-299"},"PeriodicalIF":17.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10759750/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Genomics plays an essential role in the early detection, classification, and targeted cancer therapy based on the analysis of precise alterations at the molecular level. Using the most reliable approach is essential for the exact interrogation and cross-examination of complex and multi-high-dimensional “Multi-omics” cancer genomics data. In recent years, deep learning has been successfully utilized to deal with large cancer genomics data and has the potential to transform predictive biology. This review aims to explore the recent advancements in the application of deep learning models in basic cancer omics research, including different methodologies for the interrogation of bulk cancer omics data and the importance of cross-platform data integration. The paper provides insights into advantages, limitations, potential for improvement, research gaps, future direction, and an in-depth comparison of the models currently used in the field of cancer genomics, highlighting the crucial need for collaboration and interdisciplinary research in the field.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Reviews in Biomedical Engineering
IEEE Reviews in Biomedical Engineering Engineering-Biomedical Engineering
CiteScore
31.70
自引率
0.60%
发文量
93
期刊介绍: IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信