Transactions of the American Mathematical Society, Series B最新文献

筛选
英文 中文
The Torelli map restricted to the hyperelliptic locus 托雷利图局限于超椭圆轨迹
Transactions of the American Mathematical Society, Series B Pub Date : 2019-11-05 DOI: 10.1090/BTRAN/64
Aaron Landesman
{"title":"The Torelli map restricted to the hyperelliptic locus","authors":"Aaron Landesman","doi":"10.1090/BTRAN/64","DOIUrl":"https://doi.org/10.1090/BTRAN/64","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g greater-than-or-equal-to 2\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>g</mml:mi>\u0000 <mml:mo>≥<!-- ≥ --></mml:mo>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">g geq 2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and let the Torelli map denote the map sending a genus <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\">\u0000 <mml:semantics>\u0000 <mml:mi>g</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">g</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> curve to its principally polarized Jacobian. We show that the restriction of the Torelli map to the hyperelliptic locus is an immersion in characteristic not <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\u0000 <mml:semantics>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. In characteristic <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\u0000 <mml:semantics>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, we show the Torelli map restricted to the hyperelliptic locus fails to be an immersion because it is generically inseparable; moreover, the induced map on tangent spaces has kernel of dimension <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g minus 2\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>g</mml:mi>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">g-2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> at every point.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128946527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Homomorphism obstructions for satellite maps 卫星地图的同态障碍
Transactions of the American Mathematical Society, Series B Pub Date : 2019-10-08 DOI: 10.1090/btran/123
Allison N. Miller
{"title":"Homomorphism obstructions for satellite maps","authors":"Allison N. Miller","doi":"10.1090/btran/123","DOIUrl":"https://doi.org/10.1090/btran/123","url":null,"abstract":"A knot in a solid torus defines a map on the set of (smooth or topological) concordance classes of knots in \u0000\u0000 \u0000 \u0000 S\u0000 3\u0000 \u0000 S^3\u0000 \u0000\u0000. This set admits a group structure, but a conjecture of Hedden suggests that satellite maps never induce interesting homomorphisms: we give new evidence for this conjecture in both categories. First, we use Casson-Gordon signatures to give the first obstruction to a slice pattern inducing a homomorphism on the topological concordance group, constructing examples with every winding number besides \u0000\u0000 \u0000 \u0000 ±\u0000 1\u0000 \u0000 pm 1\u0000 \u0000\u0000. We then provide subtle examples of satellite maps which map arbitrarily deep into the \u0000\u0000 \u0000 n\u0000 n\u0000 \u0000\u0000-solvable filtration of Cochran, Orr, and Teichner [Ann. of Math. (2) 157 (2003), pp. 433–519], act like homomorphisms on arbitrary finite sets of knots, and yet which still do not induce homomorphisms. Finally, we verify Hedden’s conjecture in the smooth category for all small crossing number satellite operators but one.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132074505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Entropy and dimension of disintegrations of stationary measures 平稳测度分解的熵和维数
Transactions of the American Mathematical Society, Series B Pub Date : 2019-08-05 DOI: 10.1090/BTRAN/60
Pablo Lessa
{"title":"Entropy and dimension of disintegrations of stationary measures","authors":"Pablo Lessa","doi":"10.1090/BTRAN/60","DOIUrl":"https://doi.org/10.1090/BTRAN/60","url":null,"abstract":"<p>We extend a result of Ledrappier, Hochman, and Solomyak on exact dimensionality of stationary measures for <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"SL Subscript 2 Baseline left-parenthesis double-struck upper R right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mtext>SL</mml:mtext>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">text {SL}_2(mathbb {R})</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> to disintegrations of stationary measures for <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L left-parenthesis double-struck upper R Superscript d Baseline right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>GL</mml:mi>\u0000 <mml:mo>⁡<!-- ⁡ --></mml:mo>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>d</mml:mi>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">operatorname {GL}(mathbb {R}^d)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> onto the one dimensional foliations of the space of flags obtained by forgetting a single subspace.</p>\u0000\u0000<p>The dimensions of these conditional measures are expressed in terms of the gap between consecutive Lyapunov exponents, and a certain entropy associated to the group action on the one dimensional foliation they are defined on. It is shown that the entropies thus defined are also related to simplicity of the Lyapunov spectrum for the given measure on <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L left-parenthesis double-struck upper R Superscript d Baseline right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>GL</mml:mi>\u0000 <mml:mo>⁡<!-- ⁡ --></mml:mo>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>d</mml:mi>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">operatorname {GL}(mathbb {R}^d)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130478856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Characteristic-free test ideals 无特性测试理想
Transactions of the American Mathematical Society, Series B Pub Date : 2019-07-03 DOI: 10.1090/btran/55
Felipe Pérez, Rebecca R.G.
{"title":"Characteristic-free test ideals","authors":"Felipe Pérez, Rebecca R.G.","doi":"10.1090/btran/55","DOIUrl":"https://doi.org/10.1090/btran/55","url":null,"abstract":"Tight closure test ideals have been central to the classification of singularities in rings of characteristic \u0000\u0000 \u0000 \u0000 p\u0000 >\u0000 0\u0000 \u0000 p>0\u0000 \u0000\u0000, and via reduction to characteristic \u0000\u0000 \u0000 \u0000 p\u0000 >\u0000 0\u0000 \u0000 p>0\u0000 \u0000\u0000, in equal characteristic 0 as well. Their properties and applications have been described by Schwede and Tucker [Progress in commutative algebra 2, Walter de Gruyter, Berlin, 2012]. In this paper, we extend the notion of a test ideal to arbitrary closure operations, particularly those coming from big Cohen-Macaulay modules and algebras, and prove that it shares key properties of tight closure test ideals. Our main results show how these test ideals can be used to give a characteristic-free classification of singularities, including a few specific results on the mixed characteristic case. We also compute examples of these test ideals.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130687304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Three topological reducibilities for discontinuous functions 不连续函数的三种拓扑可约性
Transactions of the American Mathematical Society, Series B Pub Date : 2019-06-18 DOI: 10.1090/btran/115
A. Day, R. Downey, L. Westrick
{"title":"Three topological reducibilities for discontinuous functions","authors":"A. Day, R. Downey, L. Westrick","doi":"10.1090/btran/115","DOIUrl":"https://doi.org/10.1090/btran/115","url":null,"abstract":"We define a family of three related reducibilities, $leq_T$, $leq_{tt}$ and $leq_m$, for arbitrary functions $f,g:Xrightarrowmathbb R$, where $X$ is a compact separable metric space. The $equiv_T$-equivalence classes mostly coincide with the proper Baire classes. We show that certain $alpha$-jump functions $j_alpha:2^omegarightarrow mathbb R$ are $leq_m$-minimal in their Baire class. Within the Baire 1 functions, we completely characterize the degree structure associated to $leq_{tt}$ and $leq_m$, finding an exact match to the $alpha$ hierarchy introduced by Bourgain and analyzed by Kechris and Louveau.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125111588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Transversals, duality, and irrational rotation 截线、对偶性和不合理旋转
Transactions of the American Mathematical Society, Series B Pub Date : 2019-05-31 DOI: 10.1090/btran/54
Anna Duwenig, Heath Emerson
{"title":"Transversals, duality, and irrational rotation","authors":"Anna Duwenig, Heath Emerson","doi":"10.1090/btran/54","DOIUrl":"https://doi.org/10.1090/btran/54","url":null,"abstract":"<p>An early result of Noncommutative Geometry was Connes’ observation in the 1980’s that the Dirac-Dolbeault cycle for the <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\u0000 <mml:semantics>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-torus <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper T squared\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">T</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {T}^2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, which induces a Poincaré self-duality for <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper T squared\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">T</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {T}^2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, can be ‘quantized’ to give a spectral triple and a K-homology class in <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper K normal upper K Subscript 0 Baseline left-parenthesis upper A Subscript theta Baseline circled-times upper A Subscript theta Baseline comma double-struck upper C right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"normal\">K</mml:mi>\u0000 <mml:mi mathvariant=\"normal\">K</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mn>0</mml:mn>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>A</mml:mi>\u0000 <mml:mi>θ<!-- θ --></mml:mi>\u0000 </mml:msub>\u0000 <mml:mo>⊗<!-- ⊗ --></mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>A</mml:mi>\u0000 <mml:mi>θ<!-- θ --></mml:mi>\u0000 </mml:msub>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">C</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathrm {KK}_0(A_theta otimes A_theta , mathbb {C})</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> providing the co-unit for a Poincaré self-duality for the irrational rotation algebra <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A Subscript theta\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>A</mml:mi>\u0000 <mml:mi>θ<!-- θ --></mml:mi>\u0000 </mml:msub>\u0000 <mml:annotation encoding=\"appli","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"132 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114512244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Algebras defined by Lyndon words and Artin-Schelter regularity 由Lyndon词和Artin-Schelter正则定义的代数
Transactions of the American Mathematical Society, Series B Pub Date : 2019-05-27 DOI: 10.1090/btran/89
T. Gateva-Ivanova
{"title":"Algebras defined by Lyndon words and Artin-Schelter regularity","authors":"T. Gateva-Ivanova","doi":"10.1090/btran/89","DOIUrl":"https://doi.org/10.1090/btran/89","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper X equals StartSet x 1 comma x 2 comma midline-horizontal-ellipsis comma x Subscript n Baseline EndSet\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:msub>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msub>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mo>⋯<!-- ⋯ --></mml:mo>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:msub>\u0000 <mml:mi>x</mml:mi>\u0000 <mml:mi>n</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">X= {x_1, x_2, cdots , x_n}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be a finite alphabet, and let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\u0000 <mml:semantics>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be a field. We study classes <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"German upper C left-parenthesis upper X comma upper W right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"fraktur\">C</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mo>,</mml:mo>\u0000 <mml:mi>W</mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathfrak {C}(X, W)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of graded <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\">\u0000 <mml:semantics>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">K</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-algebras <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A equals upper K mathematical left-angle upper X mathematical right-angle slash upper I\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>A</mml:mi>\u0000 <mml:mo>=</mml:mo>\u0000 <mml:mi>K</mml:mi>\u0000 <mml:mo fence=\"false\" stretchy=\"false\">⟨<!-- ⟨ --></mml:mo>\u0000 <mml:mi>X</mml:mi>\u0000 <mml:mo fence=\"false\" stretchy=\"false\">⟩<!-- ⟩ --></mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mo>/</mml:mo>\u0000 </mml:mrow>\u0000 <mml:mi>I</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">A = Klangle Xrangle / I</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, generated by <inline-formula content-","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"46 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120991873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
What makes a complex a virtual resolution? 是什么使复合体成为虚拟分辨率?
Transactions of the American Mathematical Society, Series B Pub Date : 2019-04-12 DOI: 10.1090/btran/91
Michael C. Loper
{"title":"What makes a complex a virtual resolution?","authors":"Michael C. Loper","doi":"10.1090/btran/91","DOIUrl":"https://doi.org/10.1090/btran/91","url":null,"abstract":"Virtual resolutions are homological representations of finitely generated \u0000\u0000 \u0000 \u0000 Pic\u0000 (\u0000 X\u0000 )\u0000 \u0000 text {Pic}(X)\u0000 \u0000\u0000-graded modules over the Cox ring of a smooth projective toric variety. In this paper, we identify two algebraic conditions that characterize when a chain complex of graded free modules over the Cox ring is a virtual resolution. We then turn our attention to the saturation of Fitting ideals by the irrelevant ideal of the Cox ring and prove some results that mirror the classical theory of Fitting ideals for Noetherian rings.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"63 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132241917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Kronecker positivity and 2-modular representation theory Kronecker正性与2模表示理论
Transactions of the American Mathematical Society, Series B Pub Date : 2019-03-18 DOI: 10.1090/btran/70
C. Bessenrodt, C. Bowman, L. Sutton
{"title":"Kronecker positivity and 2-modular representation theory","authors":"C. Bessenrodt, C. Bowman, L. Sutton","doi":"10.1090/btran/70","DOIUrl":"https://doi.org/10.1090/btran/70","url":null,"abstract":"This paper consists of two prongs. Firstly, we prove that any Specht module labelled by a 2-separated partition is semisimple and we completely determine its decomposition as a direct sum of graded simple modules. Secondly, we apply these results and other modular representation theoretic techniques on the study of Kronecker coefficients and hence verify Saxl’s conjecture for several large new families of partitions. In particular, we verify Saxl’s conjecture for all irreducible characters of \u0000\u0000 \u0000 \u0000 \u0000 S\u0000 \u0000 n\u0000 \u0000 mathfrak {S}_n\u0000 \u0000\u0000 which are of 2-height zero.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"164 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127397640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Kernel theorems in coorbit theory 共轨理论中的核定理
Transactions of the American Mathematical Society, Series B Pub Date : 2019-03-07 DOI: 10.1090/BTRAN/42
P. Balázs, K. Grōchenig, M. Speckbacher
{"title":"Kernel theorems in coorbit theory","authors":"P. Balázs, K. Grōchenig, M. Speckbacher","doi":"10.1090/BTRAN/42","DOIUrl":"https://doi.org/10.1090/BTRAN/42","url":null,"abstract":"We prove general kernel theorems for operators acting between coorbit spaces. These are Banach spaces associated to an integrable representation of a locally compact group and contain most of the usual function spaces (Besov spaces, modulation spaces, etc.). A kernel theorem describes the form of every bounded operator between a coorbit space of test functions and distributions by means of a kernel in a coorbit space associated to the tensor product representation. As special cases we recover Feichtinger’s kernel theorem for modulation spaces and the recent generalizations by Cordero and Nicola. We also obtain a kernel theorem for operators between the Besov spaces \u0000\u0000 \u0000 \u0000 \u0000 \u0000 B\u0000 ˙\u0000 \u0000 \u0000 \u0000 1\u0000 ,\u0000 1\u0000 \u0000 0\u0000 \u0000 dot {B}^0_{1,1}\u0000 \u0000\u0000 and \u0000\u0000 \u0000 \u0000 \u0000 \u0000 B\u0000 ˙\u0000 \u0000 \u0000 \u0000 ∞\u0000 ,\u0000 ∞\u0000 \u0000 \u0000 0\u0000 \u0000 \u0000 dot {B}^{0}_{infty , infty }\u0000 \u0000\u0000.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129177154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信