{"title":"The Torelli map restricted to the hyperelliptic locus","authors":"Aaron Landesman","doi":"10.1090/BTRAN/64","DOIUrl":"https://doi.org/10.1090/BTRAN/64","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g greater-than-or-equal-to 2\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>g</mml:mi>\u0000 <mml:mo>≥<!-- ≥ --></mml:mo>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">g geq 2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and let the Torelli map denote the map sending a genus <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\">\u0000 <mml:semantics>\u0000 <mml:mi>g</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">g</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> curve to its principally polarized Jacobian. We show that the restriction of the Torelli map to the hyperelliptic locus is an immersion in characteristic not <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\u0000 <mml:semantics>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. In characteristic <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\u0000 <mml:semantics>\u0000 <mml:mn>2</mml:mn>\u0000 <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>, we show the Torelli map restricted to the hyperelliptic locus fails to be an immersion because it is generically inseparable; moreover, the induced map on tangent spaces has kernel of dimension <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g minus 2\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>g</mml:mi>\u0000 <mml:mo>−<!-- − --></mml:mo>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">g-2</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> at every point.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128946527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Homomorphism obstructions for satellite maps","authors":"Allison N. Miller","doi":"10.1090/btran/123","DOIUrl":"https://doi.org/10.1090/btran/123","url":null,"abstract":"A knot in a solid torus defines a map on the set of (smooth or topological) concordance classes of knots in \u0000\u0000 \u0000 \u0000 S\u0000 3\u0000 \u0000 S^3\u0000 \u0000\u0000. This set admits a group structure, but a conjecture of Hedden suggests that satellite maps never induce interesting homomorphisms: we give new evidence for this conjecture in both categories. First, we use Casson-Gordon signatures to give the first obstruction to a slice pattern inducing a homomorphism on the topological concordance group, constructing examples with every winding number besides \u0000\u0000 \u0000 \u0000 ±\u0000 1\u0000 \u0000 pm 1\u0000 \u0000\u0000. We then provide subtle examples of satellite maps which map arbitrarily deep into the \u0000\u0000 \u0000 n\u0000 n\u0000 \u0000\u0000-solvable filtration of Cochran, Orr, and Teichner [Ann. of Math. (2) 157 (2003), pp. 433–519], act like homomorphisms on arbitrary finite sets of knots, and yet which still do not induce homomorphisms. Finally, we verify Hedden’s conjecture in the smooth category for all small crossing number satellite operators but one.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132074505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Entropy and dimension of disintegrations of stationary measures","authors":"Pablo Lessa","doi":"10.1090/BTRAN/60","DOIUrl":"https://doi.org/10.1090/BTRAN/60","url":null,"abstract":"<p>We extend a result of Ledrappier, Hochman, and Solomyak on exact dimensionality of stationary measures for <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"SL Subscript 2 Baseline left-parenthesis double-struck upper R right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:msub>\u0000 <mml:mtext>SL</mml:mtext>\u0000 <mml:mn>2</mml:mn>\u0000 </mml:msub>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">text {SL}_2(mathbb {R})</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> to disintegrations of stationary measures for <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L left-parenthesis double-struck upper R Superscript d Baseline right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>GL</mml:mi>\u0000 <mml:mo><!-- --></mml:mo>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>d</mml:mi>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">operatorname {GL}(mathbb {R}^d)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> onto the one dimensional foliations of the space of flags obtained by forgetting a single subspace.</p>\u0000\u0000<p>The dimensions of these conditional measures are expressed in terms of the gap between consecutive Lyapunov exponents, and a certain entropy associated to the group action on the one dimensional foliation they are defined on. It is shown that the entropies thus defined are also related to simplicity of the Lyapunov spectrum for the given measure on <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L left-parenthesis double-struck upper R Superscript d Baseline right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>GL</mml:mi>\u0000 <mml:mo><!-- --></mml:mo>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:msup>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">R</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>d</mml:mi>\u0000 </mml:msup>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">operatorname {GL}(mathbb {R}^d)</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130478856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characteristic-free test ideals","authors":"Felipe Pérez, Rebecca R.G.","doi":"10.1090/btran/55","DOIUrl":"https://doi.org/10.1090/btran/55","url":null,"abstract":"Tight closure test ideals have been central to the classification of singularities in rings of characteristic \u0000\u0000 \u0000 \u0000 p\u0000 >\u0000 0\u0000 \u0000 p>0\u0000 \u0000\u0000, and via reduction to characteristic \u0000\u0000 \u0000 \u0000 p\u0000 >\u0000 0\u0000 \u0000 p>0\u0000 \u0000\u0000, in equal characteristic 0 as well. Their properties and applications have been described by Schwede and Tucker [Progress in commutative algebra 2, Walter de Gruyter, Berlin, 2012]. In this paper, we extend the notion of a test ideal to arbitrary closure operations, particularly those coming from big Cohen-Macaulay modules and algebras, and prove that it shares key properties of tight closure test ideals. Our main results show how these test ideals can be used to give a characteristic-free classification of singularities, including a few specific results on the mixed characteristic case. We also compute examples of these test ideals.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130687304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Three topological reducibilities for discontinuous functions","authors":"A. Day, R. Downey, L. Westrick","doi":"10.1090/btran/115","DOIUrl":"https://doi.org/10.1090/btran/115","url":null,"abstract":"We define a family of three related reducibilities, $leq_T$, $leq_{tt}$ and $leq_m$, for arbitrary functions $f,g:Xrightarrowmathbb R$, where $X$ is a compact separable metric space. The $equiv_T$-equivalence classes mostly coincide with the proper Baire classes. We show that certain $alpha$-jump functions $j_alpha:2^omegarightarrow mathbb R$ are $leq_m$-minimal in their Baire class. Within the Baire 1 functions, we completely characterize the degree structure associated to $leq_{tt}$ and $leq_m$, finding an exact match to the $alpha$ hierarchy introduced by Bourgain and analyzed by Kechris and Louveau.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"34 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125111588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"What makes a complex a virtual resolution?","authors":"Michael C. Loper","doi":"10.1090/btran/91","DOIUrl":"https://doi.org/10.1090/btran/91","url":null,"abstract":"Virtual resolutions are homological representations of finitely generated \u0000\u0000 \u0000 \u0000 Pic\u0000 (\u0000 X\u0000 )\u0000 \u0000 text {Pic}(X)\u0000 \u0000\u0000-graded modules over the Cox ring of a smooth projective toric variety. In this paper, we identify two algebraic conditions that characterize when a chain complex of graded free modules over the Cox ring is a virtual resolution. We then turn our attention to the saturation of Fitting ideals by the irrelevant ideal of the Cox ring and prove some results that mirror the classical theory of Fitting ideals for Noetherian rings.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"63 2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132241917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kronecker positivity and 2-modular representation theory","authors":"C. Bessenrodt, C. Bowman, L. Sutton","doi":"10.1090/btran/70","DOIUrl":"https://doi.org/10.1090/btran/70","url":null,"abstract":"This paper consists of two prongs. Firstly, we prove that any Specht module labelled by a 2-separated partition is semisimple and we completely determine its decomposition as a direct sum of graded simple modules. Secondly, we apply these results and other modular representation theoretic techniques on the study of Kronecker coefficients and hence verify Saxl’s conjecture for several large new families of partitions. In particular, we verify Saxl’s conjecture for all irreducible characters of \u0000\u0000 \u0000 \u0000 \u0000 S\u0000 \u0000 n\u0000 \u0000 mathfrak {S}_n\u0000 \u0000\u0000 which are of 2-height zero.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"164 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127397640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Kernel theorems in coorbit theory","authors":"P. Balázs, K. Grōchenig, M. Speckbacher","doi":"10.1090/BTRAN/42","DOIUrl":"https://doi.org/10.1090/BTRAN/42","url":null,"abstract":"We prove general kernel theorems for operators acting between coorbit spaces. These are Banach spaces associated to an integrable representation of a locally compact group and contain most of the usual function spaces (Besov spaces, modulation spaces, etc.). A kernel theorem describes the form of every bounded operator between a coorbit space of test functions and distributions by means of a kernel in a coorbit space associated to the tensor product representation. As special cases we recover Feichtinger’s kernel theorem for modulation spaces and the recent generalizations by Cordero and Nicola. We also obtain a kernel theorem for operators between the Besov spaces \u0000\u0000 \u0000 \u0000 \u0000 \u0000 B\u0000 ˙\u0000 \u0000 \u0000 \u0000 1\u0000 ,\u0000 1\u0000 \u0000 0\u0000 \u0000 dot {B}^0_{1,1}\u0000 \u0000\u0000 and \u0000\u0000 \u0000 \u0000 \u0000 \u0000 B\u0000 ˙\u0000 \u0000 \u0000 \u0000 ∞\u0000 ,\u0000 ∞\u0000 \u0000 \u0000 0\u0000 \u0000 \u0000 dot {B}^{0}_{infty , infty }\u0000 \u0000\u0000.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129177154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}