{"title":"A unipotent circle action on 𝑝-adic modular forms","authors":"S. Howe","doi":"10.1090/btran/52","DOIUrl":"https://doi.org/10.1090/btran/52","url":null,"abstract":"<p>Following a suggestion of Peter Scholze, we construct an action of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove double-struck upper G Subscript m Baseline With caret\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mover>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">G</mml:mi>\u0000 </mml:mrow>\u0000 <mml:mi>m</mml:mi>\u0000 </mml:msub>\u0000 <mml:mo>^<!-- ^ --></mml:mo>\u0000 </mml:mover>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">widehat {mathbb {G}_m}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> on the Katz moduli problem, a profinite-étale cover of the ordinary locus of the <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\u0000 <mml:semantics>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-adic modular curve whose ring of functions is Serre’s space of <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\u0000 <mml:semantics>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-adic modular functions. This action is a local, <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\u0000 <mml:semantics>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-adic analog of a global, archimedean action of the circle group <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S Superscript 1\">\u0000 <mml:semantics>\u0000 <mml:msup>\u0000 <mml:mi>S</mml:mi>\u0000 <mml:mn>1</mml:mn>\u0000 </mml:msup>\u0000 <mml:annotation encoding=\"application/x-tex\">S^1</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> on the lattice-unstable locus of the modular curve over <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">C</mml:mi>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">mathbb {C}</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. To construct the <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove double-struck upper G Subscript m Baseline With caret\">\u0000 <mml:semantics>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mover>\u0000 <mml:msub>\u0000 <mml:mrow class=\"MJX-TeXAtom-ORD\">\u0000 <mml:mi mathvariant=\"double-struck\">G</mml:mi>\u0000 ","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"191 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133262968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The positive Dressian equals the positive tropical Grassmannian","authors":"David E. Speyer, L. Williams","doi":"10.1090/BTRAN/67","DOIUrl":"https://doi.org/10.1090/BTRAN/67","url":null,"abstract":"The Dressian and the tropical Grassmannian parameterize abstract and realizable tropical linear spaces; but in general, the Dressian is much larger than the tropical Grassmannian. There are natural positive notions of both of these spaces -- the positive Dressian, and the positive tropical Grassmannian (which we introduced roughly fifteen years ago) -- so it is natural to ask how these two positive spaces compare. In this paper we show that the positive Dressian equals the positive tropical Grassmannian. Using the connection between the positive Dressian and regular positroidal subdivisions of the hypersimplex, we use our result to give a new \"tropical\" proof of da Silva's 1987 conjecture (first proved in 2017 by Ardila-Rincon-Williams) that all positively oriented matroids are realizable. We also show that the finest regular positroidal subdivisions of the hypersimplex consist of series-parallel matroid polytopes, and achieve equality in Speyer's f-vector theorem. Finally we give an example of a positroidal subdivision of the hypersimplex which is not regular, and make a connection to the theory of tropical hyperplane arrangements.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127469701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type","authors":"N. Andruskiewitsch, Guillermo Sanmarco","doi":"10.1090/btran/66","DOIUrl":"https://doi.org/10.1090/btran/66","url":null,"abstract":"We study pre-Nichols algebras of quantum linear spaces and of Cartan type with finite GK-dimension. We prove that except for a short list of exceptions involving only roots of order 2, 3, 4, 6, any such pre-Nichols algebra is a quotient of the distinguished pre-Nichols algebra introduced by Angiono generalizing the De Concini-Kac-Procesi quantum groups. There are two new examples, one of which can be thought of as \u0000\u0000 \u0000 \u0000 G\u0000 2\u0000 \u0000 G_2\u0000 \u0000\u0000 at a third root of one.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128244761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On complete reducibility of tensor products of simple modules over simple algebraic groups","authors":"J. Gruber","doi":"10.1090/btran/58","DOIUrl":"https://doi.org/10.1090/btran/58","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> be a simply connected simple algebraic group over an algebraically closed field <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\u0000 <mml:semantics>\u0000 <mml:mi>k</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> of characteristic <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than 0\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>p</mml:mi>\u0000 <mml:mo>></mml:mo>\u0000 <mml:mn>0</mml:mn>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">p>0</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>. The category of rational <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-modules is not semisimple. We consider the question of when the tensor product of two simple <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\u0000 <mml:semantics>\u0000 <mml:mi>G</mml:mi>\u0000 <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula>-modules <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L left-parenthesis lamda right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>λ<!-- λ --></mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">L(lambda )</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> and <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L left-parenthesis mu right-parenthesis\">\u0000 <mml:semantics>\u0000 <mml:mrow>\u0000 <mml:mi>L</mml:mi>\u0000 <mml:mo stretchy=\"false\">(</mml:mo>\u0000 <mml:mi>μ<!-- μ --></mml:mi>\u0000 <mml:mo stretchy=\"false\">)</mml:mo>\u0000 </mml:mrow>\u0000 <mml:annotation encoding=\"application/x-tex\">L(mu )</mml:annotation>\u0000 </mml:semantics>\u0000</mml:math>\u0000</inline-formula> is completely reducible. Using some technical results about weakly maximal vectors (i.e. maximal vectors for the action of the Frobenius kernel <inline-formula content-type=\"math/mathml\">\u0000<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G 1\">\u0000 <mml:semantics>\u0000 <mml:msub>\u0000 <mml:mi>G</mml:mi>\u0000 <mm","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"181 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126951535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the precise asymptotics of Type-IIb solutions to mean curvature flow","authors":"J. Isenberg, Haotian Wu, Zuxun Zhang","doi":"10.1090/btran/76","DOIUrl":"https://doi.org/10.1090/btran/76","url":null,"abstract":"In this paper, we study the precise asymptotics of noncompact Type-IIb solutions to the mean curvature flow. Precisely, for each real number $gamma>0$, we construct mean curvature flow solutions, in the rotationally symmetric class, with the following precise asymptotics as $tnearrowinfty$: (1) The highest curvature concentrates at the tip of the hypersurface (an umbilical point) and blows up at the Type-IIb rate $(2t+1)^{(gamma-1)/2}$. (2) In a neighbourhood of the tip, the Type-IIb blow-up of the solution converges to a translating soliton known as the bowl soliton. (3) Near spatial infinity, the hypersurface has a precise growth rate depending on $gamma$.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124563305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An equivariant basis for the cohomology of Springer fibers","authors":"Martha Precup, Edward Richmond","doi":"10.1090/BTRAN/57","DOIUrl":"https://doi.org/10.1090/BTRAN/57","url":null,"abstract":"Springer fibers are subvarieties of the flag variety that play an important role in combinatorics and geometric representation theory. In this paper, we analyze the equivariant cohomology of Springer fibers for \u0000\u0000 \u0000 \u0000 G\u0000 \u0000 L\u0000 n\u0000 \u0000 (\u0000 \u0000 C\u0000 \u0000 )\u0000 \u0000 GL_n(mathbb {C})\u0000 \u0000\u0000 using results of Kumar and Procesi that describe this equivariant cohomology as a quotient ring. We define a basis for the equivariant cohomology of a Springer fiber, generalizing a monomial basis of the ordinary cohomology defined by De Concini and Procesi and studied by Garsia and Procesi. Our construction yields a combinatorial framework with which to study the equivariant and ordinary cohomology rings of Springer fibers. As an application, we identify an explicit collection of (equivariant) Schubert classes whose images in the (equivariant) cohomology ring of a given Springer fiber form a basis.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"86 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124889207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Persistent obstruction theory for a model category of measures with applications to data merging","authors":"Abraham Smith, Paul Bendich, J. Harer","doi":"10.1090/BTRAN/56","DOIUrl":"https://doi.org/10.1090/BTRAN/56","url":null,"abstract":"Collections of measures on compact metric spaces form a model category (“data complexes”), whose morphisms are marginalization integrals. The fibrant objects in this category represent collections of measures in which there is a measure on a product space that marginalizes to any measures on pairs of its factors. The homotopy and homology for this category allow measurement of obstructions to finding measures on larger and larger product spaces. The obstruction theory is compatible with a fibrant filtration built from the Wasserstein distance on measures.\u0000\u0000Despite the abstract tools, this is motivated by a widespread problem in data science. Data complexes provide a mathematical foundation for semi-automated data-alignment tools that are common in commercial database software. Practically speaking, the theory shows that database JOIN operations are subject to genuine topological obstructions. Those obstructions can be detected by an obstruction cocycle and can be resolved by moving through a filtration. Thus, any collection of databases has a persistence level, which measures the difficulty of JOINing those databases. Because of its general formulation, this persistent obstruction theory also encompasses multi-modal data fusion problems, some forms of Bayesian inference, and probability couplings.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127614559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A topological dynamical system with two different positive sofic entropies","authors":"D. Airey, L. Bowen, F. Lin","doi":"10.1090/btran/101","DOIUrl":"https://doi.org/10.1090/btran/101","url":null,"abstract":"A sofic approximation to a countable group is a sequence of partial actions on finite sets that asymptotically approximates the action of the group on itself by left-translations. A group is sofic if it admits a sofic approximation. Sofic entropy theory is a generalization of classical entropy theory in dynamics to actions by sofic groups. However, the sofic entropy of an action may depend on a choice of sofic approximation. All previously known examples showing this dependence rely on degenerate behavior. This paper exhibits an explicit example of a mixing subshift of finite type with two different positive sofic entropies. The example is inspired by statistical physics literature on 2-colorings of random hyper-graphs.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124193813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Canonical equivariant cohomology classes generating zeta values of totally real fields","authors":"Kenichi Bannai, Kei Hagihara, Kazuki Yamada, Shuji Yamamoto","doi":"10.1090/btran/144","DOIUrl":"https://doi.org/10.1090/btran/144","url":null,"abstract":"It is known that the special values at nonpositive integers of a Dirichlet \u0000\u0000 \u0000 L\u0000 L\u0000 \u0000\u0000-function may be expressed using the generalized Bernoulli numbers, which are defined by a generating function. The purpose of this article is to consider the generalization of this classical result to the case of Hecke \u0000\u0000 \u0000 L\u0000 L\u0000 \u0000\u0000-functions of totally real fields. Hecke \u0000\u0000 \u0000 L\u0000 L\u0000 \u0000\u0000-functions may be expressed canonically as a finite sum of zeta functions of Lerch type. By combining the non-canonical multivariable generating functions constructed by Shintani [J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), pp. 393–417], we newly construct a canonical class, which we call the Shintani generating class, in the equivariant cohomology of an algebraic torus associated to the totally real field. Our main result states that the specializations at torsion points of the derivatives of the Shintani generating class give values at nonpositive integers of the zeta functions of Lerch type. This result gives the insight that the correct framework in the higher dimensional case is to consider higher equivariant cohomology classes instead of functions.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"29 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125243264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A generating function approach to new representation stability phenomena in orbit configuration spaces","authors":"C. Bibby, Nir Gadish","doi":"10.1090/btran/130","DOIUrl":"https://doi.org/10.1090/btran/130","url":null,"abstract":"As countless examples show, it can be fruitful to study a sequence of complicated objects all at once via the formalism of generating functions. We apply this point of view to the homology and combinatorics of orbit configuration spaces: using the notion of twisted commutative algebras, which essentially categorify algebras in exponential generating functions. This idea allows for a factorization of the orbit configuration space “generating function” into an infinite product, whose terms are surprisingly easy to understand. Beyond the intrinsic aesthetic of this decomposition and its quantitative consequences, it suggests a sequence of primary, secondary, and higher representation stability phenomena. Based on this, we give a simple geometric recipe for identifying new stabilization actions with finiteness properties in some cases, which we use to unify and generalize known stability results. We demonstrate our method by characterizing secondary and higher stability for configuration spaces on \u0000\u0000 \u0000 i\u0000 i\u0000 \u0000\u0000-acyclic spaces. For another application, we describe a natural filtration by which one observes a filtered representation stability phenomenon in configuration spaces on graphs.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126695691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}