{"title":"On complete reducibility of tensor products of simple modules over simple algebraic groups","authors":"J. Gruber","doi":"10.1090/btran/58","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> be a simply connected simple algebraic group over an algebraically closed field <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"k\">\n <mml:semantics>\n <mml:mi>k</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">k</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of characteristic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>p</mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">p>0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. The category of rational <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-modules is not semisimple. We consider the question of when the tensor product of two simple <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-modules <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L left-parenthesis lamda right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>L</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">L(\\lambda )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L left-parenthesis mu right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>L</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">L(\\mu )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is completely reducible. Using some technical results about weakly maximal vectors (i.e. maximal vectors for the action of the Frobenius kernel <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G 1\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>G</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">G_1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>) in tensor products, we obtain a reduction to the case where the highest weights <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda\">\n <mml:semantics>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\lambda</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\">\n <mml:semantics>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\mu</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> are <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-restricted. In this case, we also prove that <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L left-parenthesis lamda right-parenthesis circled-times upper L left-parenthesis mu right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>L</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\n <mml:mi>L</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">L(\\lambda )\\otimes L(\\mu )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is completely reducible as a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G\">\n <mml:semantics>\n <mml:mi>G</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">G</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-module if and only if <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L left-parenthesis lamda right-parenthesis circled-times upper L left-parenthesis mu right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>L</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>⊗<!-- ⊗ --></mml:mo>\n <mml:mi>L</mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">L(\\lambda )\\otimes L(\\mu )</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is completely reducible as a <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G 1\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>G</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">G_1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-module.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let GG be a simply connected simple algebraic group over an algebraically closed field kk of characteristic p>0p>0. The category of rational GG-modules is not semisimple. We consider the question of when the tensor product of two simple GG-modules L(λ)L(\lambda ) and L(μ)L(\mu ) is completely reducible. Using some technical results about weakly maximal vectors (i.e. maximal vectors for the action of the Frobenius kernel G1G_1 of GG) in tensor products, we obtain a reduction to the case where the highest weights λ\lambda and μ\mu are pp-restricted. In this case, we also prove that L(λ)⊗L(μ)L(\lambda )\otimes L(\mu ) is completely reducible as a GG-module if and only if L(λ)⊗L(μ)L(\lambda )\otimes L(\mu ) is completely reducible as a G1G_1-module.