产生全实数域的ζ值的正则等变上同调类

Kenichi Bannai, Kei Hagihara, Kazuki Yamada, Shuji Yamamoto
{"title":"产生全实数域的ζ值的正则等变上同调类","authors":"Kenichi Bannai, Kei Hagihara, Kazuki Yamada, Shuji Yamamoto","doi":"10.1090/btran/144","DOIUrl":null,"url":null,"abstract":"It is known that the special values at nonpositive integers of a Dirichlet \n\n \n L\n L\n \n\n-function may be expressed using the generalized Bernoulli numbers, which are defined by a generating function. The purpose of this article is to consider the generalization of this classical result to the case of Hecke \n\n \n L\n L\n \n\n-functions of totally real fields. Hecke \n\n \n L\n L\n \n\n-functions may be expressed canonically as a finite sum of zeta functions of Lerch type. By combining the non-canonical multivariable generating functions constructed by Shintani [J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), pp. 393–417], we newly construct a canonical class, which we call the Shintani generating class, in the equivariant cohomology of an algebraic torus associated to the totally real field. Our main result states that the specializations at torsion points of the derivatives of the Shintani generating class give values at nonpositive integers of the zeta functions of Lerch type. This result gives the insight that the correct framework in the higher dimensional case is to consider higher equivariant cohomology classes instead of functions.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Canonical equivariant cohomology classes generating zeta values of totally real fields\",\"authors\":\"Kenichi Bannai, Kei Hagihara, Kazuki Yamada, Shuji Yamamoto\",\"doi\":\"10.1090/btran/144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is known that the special values at nonpositive integers of a Dirichlet \\n\\n \\n L\\n L\\n \\n\\n-function may be expressed using the generalized Bernoulli numbers, which are defined by a generating function. The purpose of this article is to consider the generalization of this classical result to the case of Hecke \\n\\n \\n L\\n L\\n \\n\\n-functions of totally real fields. Hecke \\n\\n \\n L\\n L\\n \\n\\n-functions may be expressed canonically as a finite sum of zeta functions of Lerch type. By combining the non-canonical multivariable generating functions constructed by Shintani [J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), pp. 393–417], we newly construct a canonical class, which we call the Shintani generating class, in the equivariant cohomology of an algebraic torus associated to the totally real field. Our main result states that the specializations at torsion points of the derivatives of the Shintani generating class give values at nonpositive integers of the zeta functions of Lerch type. This result gives the insight that the correct framework in the higher dimensional case is to consider higher equivariant cohomology classes instead of functions.\",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/btran/144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

已知狄利克雷L -函数在非正整数处的特殊值可以用由生成函数定义的广义伯努利数来表示。本文的目的是考虑将这一经典结果推广到完全实域的Hecke L - L -函数的情况。Hecke L L -函数可以正则地表示为lech型ζ函数的有限和。结合Shintani构造的非正则多变量生成函数[J]。前沿空中管制官。科学。我们在与全实数域相关的代数环面的等变上同调中构造了一个正则类,我们称之为Shintani生成类。我们的主要结果表明,Shintani生成类的导数的扭转点的专门化给出了lach型zeta函数的非正整数的值。这一结果表明,在高维情况下,正确的框架是考虑更高等变上同调类而不是函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Canonical equivariant cohomology classes generating zeta values of totally real fields
It is known that the special values at nonpositive integers of a Dirichlet L L -function may be expressed using the generalized Bernoulli numbers, which are defined by a generating function. The purpose of this article is to consider the generalization of this classical result to the case of Hecke L L -functions of totally real fields. Hecke L L -functions may be expressed canonically as a finite sum of zeta functions of Lerch type. By combining the non-canonical multivariable generating functions constructed by Shintani [J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), pp. 393–417], we newly construct a canonical class, which we call the Shintani generating class, in the equivariant cohomology of an algebraic torus associated to the totally real field. Our main result states that the specializations at torsion points of the derivatives of the Shintani generating class give values at nonpositive integers of the zeta functions of Lerch type. This result gives the insight that the correct framework in the higher dimensional case is to consider higher equivariant cohomology classes instead of functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信