{"title":"𝑝-adic模形式上的一个单幂圆作用","authors":"S. Howe","doi":"10.1090/btran/52","DOIUrl":null,"url":null,"abstract":"<p>Following a suggestion of Peter Scholze, we construct an action of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove double-struck upper G Subscript m Baseline With caret\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">G</mml:mi>\n </mml:mrow>\n <mml:mi>m</mml:mi>\n </mml:msub>\n <mml:mo>^<!-- ^ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\widehat {\\mathbb {G}_m}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on the Katz moduli problem, a profinite-étale cover of the ordinary locus of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic modular curve whose ring of functions is Serre’s space of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic modular functions. This action is a local, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic analog of a global, archimedean action of the circle group <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S Superscript 1\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>S</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">S^1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> on the lattice-unstable locus of the modular curve over <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper C\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">C</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {C}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. To construct the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove double-struck upper G Subscript m Baseline With caret\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">G</mml:mi>\n </mml:mrow>\n <mml:mi>m</mml:mi>\n </mml:msub>\n <mml:mo>^<!-- ^ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\widehat {\\mathbb {G}_m}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-action, we descend a moduli-theoretic action of a larger group on the (big) ordinary Igusa variety of Caraiani-Scholze. We compute the action explicitly on local expansions and find it is given by a simple multiplication of the cuspidal and Serre-Tate coordinates <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q\">\n <mml:semantics>\n <mml:mi>q</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">q</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>; along the way we also prove a natural generalization of Dwork’s equation <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau equals log q\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>τ<!-- τ --></mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mi>log</mml:mi>\n <mml:mo><!-- --></mml:mo>\n <mml:mi>q</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\tau =\\log q</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> for extensions of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q Subscript p Baseline slash double-struck upper Z Subscript p\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Q</mml:mi>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n </mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>/</mml:mo>\n </mml:mrow>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:mi>p</mml:mi>\n </mml:msub>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}_p/\\mathbb {Z}_p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> by <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu Subscript p Sub Superscript normal infinity\">\n <mml:semantics>\n <mml:msub>\n <mml:mi>μ<!-- μ --></mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:msup>\n <mml:mi>p</mml:mi>\n <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi>\n </mml:msup>\n </mml:mrow>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mu _{p^\\infty }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> valid over a non-Artinian base. Finally, we give a direct argument (without appealing to local expansions) to show that the action of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove double-struck upper G Subscript m Baseline With caret\">\n <mml:semantics>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mover>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">G</mml:mi>\n </mml:mrow>\n <mml:mi>m</mml:mi>\n </mml:msub>\n <mml:mo>^<!-- ^ --></mml:mo>\n </mml:mover>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\widehat {\\mathbb {G}_m}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> integrates the differential operator <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"theta\">\n <mml:semantics>\n <mml:mi>θ<!-- θ --></mml:mi>\n <mml:annotation encoding=\"application/x-tex\">\\theta</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> coming from the Gauss-Manin connection and unit root splitting, and explain an application to Eisenstein measures and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\">\n <mml:semantics>\n <mml:mi>p</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">p</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-adic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\">\n <mml:semantics>\n <mml:mi>L</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">L</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-functions.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A unipotent circle action on 𝑝-adic modular forms\",\"authors\":\"S. Howe\",\"doi\":\"10.1090/btran/52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Following a suggestion of Peter Scholze, we construct an action of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove double-struck upper G Subscript m Baseline With caret\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">G</mml:mi>\\n </mml:mrow>\\n <mml:mi>m</mml:mi>\\n </mml:msub>\\n <mml:mo>^<!-- ^ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\widehat {\\\\mathbb {G}_m}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> on the Katz moduli problem, a profinite-étale cover of the ordinary locus of the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-adic modular curve whose ring of functions is Serre’s space of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-adic modular functions. This action is a local, <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-adic analog of a global, archimedean action of the circle group <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper S Superscript 1\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mi>S</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">S^1</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> on the lattice-unstable locus of the modular curve over <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper C\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">C</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {C}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. To construct the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove double-struck upper G Subscript m Baseline With caret\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">G</mml:mi>\\n </mml:mrow>\\n <mml:mi>m</mml:mi>\\n </mml:msub>\\n <mml:mo>^<!-- ^ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\widehat {\\\\mathbb {G}_m}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-action, we descend a moduli-theoretic action of a larger group on the (big) ordinary Igusa variety of Caraiani-Scholze. We compute the action explicitly on local expansions and find it is given by a simple multiplication of the cuspidal and Serre-Tate coordinates <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"q\\\">\\n <mml:semantics>\\n <mml:mi>q</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">q</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>; along the way we also prove a natural generalization of Dwork’s equation <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"tau equals log q\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>τ<!-- τ --></mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mi>log</mml:mi>\\n <mml:mo><!-- --></mml:mo>\\n <mml:mi>q</mml:mi>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\tau =\\\\log q</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> for extensions of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper Q Subscript p Baseline slash double-struck upper Z Subscript p\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Q</mml:mi>\\n </mml:mrow>\\n <mml:mi>p</mml:mi>\\n </mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>/</mml:mo>\\n </mml:mrow>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">Z</mml:mi>\\n </mml:mrow>\\n <mml:mi>p</mml:mi>\\n </mml:msub>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {Q}_p/\\\\mathbb {Z}_p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> by <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"mu Subscript p Sub Superscript normal infinity\\\">\\n <mml:semantics>\\n <mml:msub>\\n <mml:mi>μ<!-- μ --></mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:msup>\\n <mml:mi>p</mml:mi>\\n <mml:mi mathvariant=\\\"normal\\\">∞<!-- ∞ --></mml:mi>\\n </mml:msup>\\n </mml:mrow>\\n </mml:msub>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mu _{p^\\\\infty }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> valid over a non-Artinian base. Finally, we give a direct argument (without appealing to local expansions) to show that the action of <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"ModifyingAbove double-struck upper G Subscript m Baseline With caret\\\">\\n <mml:semantics>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mover>\\n <mml:msub>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">G</mml:mi>\\n </mml:mrow>\\n <mml:mi>m</mml:mi>\\n </mml:msub>\\n <mml:mo>^<!-- ^ --></mml:mo>\\n </mml:mover>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\widehat {\\\\mathbb {G}_m}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> integrates the differential operator <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"theta\\\">\\n <mml:semantics>\\n <mml:mi>θ<!-- θ --></mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\theta</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> coming from the Gauss-Manin connection and unit root splitting, and explain an application to Eisenstein measures and <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"p\\\">\\n <mml:semantics>\\n <mml:mi>p</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">p</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-adic <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper L\\\">\\n <mml:semantics>\\n <mml:mi>L</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">L</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>-functions.</p>\",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"191 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/btran/52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
摘要
根据Peter Scholze的建议,我们构造了G m ^ \widehat{\mathbb G_m{对Katz模问题的作用。Katz模问题是p进模曲线的普通轨迹的一个无限的模数覆盖,它的函数环是p进模函数的Serre空间。这个作用是C }}\mathbb C{上模曲线的格不稳定轨迹上圆群s1 S^1的全局阿基米德作用的一个局部p进模拟}。为了构造G m ^ \widehat{\mathbb G_m{ -作用,我们在Caraiani-Scholze的(大)普通Igusa变元上推导了一个较大群的模理论作用。我们在局部展开式上明确地计算了作用,并发现它是由cuspidal坐标和Serre-Tate坐标q q的简单乘法给出的;在此过程中,我们还证明了Dwork方程τ = log (q}) }\tau = \log (q)对q p/ Z p \mathbb Q_p{/ }\mathbb Z_p{通过μ p∞}\mu _p^{\infty在a}上有效的扩展非阿提尼亚基地。最后,我们给出了一个直接的论证(不诉诸局部展开)来证明G m ^\widehat{\mathbb G_m{的作用}积分了来自高斯-马宁连接和单位根分裂的微分算子}θ \theta,并解释了在爱森斯坦测度和p -进L -函数中的应用。
Following a suggestion of Peter Scholze, we construct an action of Gm^\widehat {\mathbb {G}_m} on the Katz moduli problem, a profinite-étale cover of the ordinary locus of the pp-adic modular curve whose ring of functions is Serre’s space of pp-adic modular functions. This action is a local, pp-adic analog of a global, archimedean action of the circle group S1S^1 on the lattice-unstable locus of the modular curve over C\mathbb {C}. To construct the Gm^\widehat {\mathbb {G}_m}-action, we descend a moduli-theoretic action of a larger group on the (big) ordinary Igusa variety of Caraiani-Scholze. We compute the action explicitly on local expansions and find it is given by a simple multiplication of the cuspidal and Serre-Tate coordinates qq; along the way we also prove a natural generalization of Dwork’s equation τ=logq\tau =\log q for extensions of Qp/Zp\mathbb {Q}_p/\mathbb {Z}_p by μp∞\mu _{p^\infty } valid over a non-Artinian base. Finally, we give a direct argument (without appealing to local expansions) to show that the action of Gm^\widehat {\mathbb {G}_m} integrates the differential operator θ\theta coming from the Gauss-Manin connection and unit root splitting, and explain an application to Eisenstein measures and pp-adic LL-functions.