平均曲率流的iib型解的精确渐近性

J. Isenberg, Haotian Wu, Zuxun Zhang
{"title":"平均曲率流的iib型解的精确渐近性","authors":"J. Isenberg, Haotian Wu, Zuxun Zhang","doi":"10.1090/btran/76","DOIUrl":null,"url":null,"abstract":"In this paper, we study the precise asymptotics of noncompact Type-IIb solutions to the mean curvature flow. Precisely, for each real number $\\gamma>0$, we construct mean curvature flow solutions, in the rotationally symmetric class, with the following precise asymptotics as $t\\nearrow\\infty$: (1) The highest curvature concentrates at the tip of the hypersurface (an umbilical point) and blows up at the Type-IIb rate $(2t+1)^{(\\gamma-1)/2}$. (2) In a neighbourhood of the tip, the Type-IIb blow-up of the solution converges to a translating soliton known as the bowl soliton. (3) Near spatial infinity, the hypersurface has a precise growth rate depending on $\\gamma$.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the precise asymptotics of Type-IIb solutions to mean curvature flow\",\"authors\":\"J. Isenberg, Haotian Wu, Zuxun Zhang\",\"doi\":\"10.1090/btran/76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the precise asymptotics of noncompact Type-IIb solutions to the mean curvature flow. Precisely, for each real number $\\\\gamma>0$, we construct mean curvature flow solutions, in the rotationally symmetric class, with the following precise asymptotics as $t\\\\nearrow\\\\infty$: (1) The highest curvature concentrates at the tip of the hypersurface (an umbilical point) and blows up at the Type-IIb rate $(2t+1)^{(\\\\gamma-1)/2}$. (2) In a neighbourhood of the tip, the Type-IIb blow-up of the solution converges to a translating soliton known as the bowl soliton. (3) Near spatial infinity, the hypersurface has a precise growth rate depending on $\\\\gamma$.\",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/btran/76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了平均曲率流的非紧iib型解的精确渐近性。准确地说,对于每个实数$\gamma>0$,我们在旋转对称类中构造了平均曲率流解,其精确渐近性如下$t\nearrow\infty$:(1)最高曲率集中在超曲面的尖端(一个脐点),并以iib型速率$(2t+1)^{(\gamma-1)/2}$爆炸。(2)在尖端附近,解的iib型爆炸收敛为一个平移孤子,称为碗孤子。(3)在空间无限近处,超曲面有一个精确的增长率,这取决于$\gamma$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the precise asymptotics of Type-IIb solutions to mean curvature flow
In this paper, we study the precise asymptotics of noncompact Type-IIb solutions to the mean curvature flow. Precisely, for each real number $\gamma>0$, we construct mean curvature flow solutions, in the rotationally symmetric class, with the following precise asymptotics as $t\nearrow\infty$: (1) The highest curvature concentrates at the tip of the hypersurface (an umbilical point) and blows up at the Type-IIb rate $(2t+1)^{(\gamma-1)/2}$. (2) In a neighbourhood of the tip, the Type-IIb blow-up of the solution converges to a translating soliton known as the bowl soliton. (3) Near spatial infinity, the hypersurface has a precise growth rate depending on $\gamma$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信