Three topological reducibilities for discontinuous functions

A. Day, R. Downey, L. Westrick
{"title":"Three topological reducibilities for discontinuous functions","authors":"A. Day, R. Downey, L. Westrick","doi":"10.1090/btran/115","DOIUrl":null,"url":null,"abstract":"We define a family of three related reducibilities, $\\leq_T$, $\\leq_{tt}$ and $\\leq_m$, for arbitrary functions $f,g:X\\rightarrow\\mathbb R$, where $X$ is a compact separable metric space. The $\\equiv_T$-equivalence classes mostly coincide with the proper Baire classes. We show that certain $\\alpha$-jump functions $j_\\alpha:2^\\omega\\rightarrow \\mathbb R$ are $\\leq_m$-minimal in their Baire class. Within the Baire 1 functions, we completely characterize the degree structure associated to $\\leq_{tt}$ and $\\leq_m$, finding an exact match to the $\\alpha$ hierarchy introduced by Bourgain and analyzed by Kechris and Louveau.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We define a family of three related reducibilities, $\leq_T$, $\leq_{tt}$ and $\leq_m$, for arbitrary functions $f,g:X\rightarrow\mathbb R$, where $X$ is a compact separable metric space. The $\equiv_T$-equivalence classes mostly coincide with the proper Baire classes. We show that certain $\alpha$-jump functions $j_\alpha:2^\omega\rightarrow \mathbb R$ are $\leq_m$-minimal in their Baire class. Within the Baire 1 functions, we completely characterize the degree structure associated to $\leq_{tt}$ and $\leq_m$, finding an exact match to the $\alpha$ hierarchy introduced by Bourgain and analyzed by Kechris and Louveau.
不连续函数的三种拓扑可约性
对于任意函数$f,g:X\rightarrow\mathbb R$,我们定义了一个由三个相关的可约性组成的族,$\leq_T$, $\leq_{tt}$和$\leq_m$,其中$X$是紧可分度量空间。$\equiv_T$ -等价类大多与适当的Baire类一致。我们展示了某些$\alpha$ -跳转函数$j_\alpha:2^\omega\rightarrow \mathbb R$在它们的Baire类中是$\leq_m$ -最小的。在Baire 1函数中,我们完全描述了与$\leq_{tt}$和$\leq_m$相关的度结构,找到了与Bourgain引入并由Kechris和Louveau分析的$\alpha$层次结构的精确匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信