Homomorphism obstructions for satellite maps

Allison N. Miller
{"title":"Homomorphism obstructions for satellite maps","authors":"Allison N. Miller","doi":"10.1090/btran/123","DOIUrl":null,"url":null,"abstract":"A knot in a solid torus defines a map on the set of (smooth or topological) concordance classes of knots in \n\n \n \n S\n 3\n \n S^3\n \n\n. This set admits a group structure, but a conjecture of Hedden suggests that satellite maps never induce interesting homomorphisms: we give new evidence for this conjecture in both categories. First, we use Casson-Gordon signatures to give the first obstruction to a slice pattern inducing a homomorphism on the topological concordance group, constructing examples with every winding number besides \n\n \n \n ±\n 1\n \n \\pm 1\n \n\n. We then provide subtle examples of satellite maps which map arbitrarily deep into the \n\n \n n\n n\n \n\n-solvable filtration of Cochran, Orr, and Teichner [Ann. of Math. (2) 157 (2003), pp. 433–519], act like homomorphisms on arbitrary finite sets of knots, and yet which still do not induce homomorphisms. Finally, we verify Hedden’s conjecture in the smooth category for all small crossing number satellite operators but one.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A knot in a solid torus defines a map on the set of (smooth or topological) concordance classes of knots in S 3 S^3 . This set admits a group structure, but a conjecture of Hedden suggests that satellite maps never induce interesting homomorphisms: we give new evidence for this conjecture in both categories. First, we use Casson-Gordon signatures to give the first obstruction to a slice pattern inducing a homomorphism on the topological concordance group, constructing examples with every winding number besides ± 1 \pm 1 . We then provide subtle examples of satellite maps which map arbitrarily deep into the n n -solvable filtration of Cochran, Orr, and Teichner [Ann. of Math. (2) 157 (2003), pp. 433–519], act like homomorphisms on arbitrary finite sets of knots, and yet which still do not induce homomorphisms. Finally, we verify Hedden’s conjecture in the smooth category for all small crossing number satellite operators but one.
卫星地图的同态障碍
一个实心环面的结定义了S^3中结的(光滑的或拓扑的)一致性类集合上的映射。这个集合承认一个群结构,但是heden的一个猜想表明卫星图从来不会产生有趣的同态:我们在两个范畴中为这个猜想提供了新的证据。首先,我们使用Casson-Gordon签名给出了在拓扑和谐群上诱导同态的片模式的第一个障碍,构造了除±1 \pm 1以外的所有圈数的例子。然后,我们提供了卫星地图的微妙例子,这些卫星地图可以任意深入到Cochran, Orr和Teichner [Ann]的n可解过滤中。的数学。(2) 157 (2003), pp. 433-519],在任意有限节集合上表现得像同态,但仍然不诱导同态。最后,我们对除一个卫星运营商外的所有小交叉数卫星运营商在光滑范畴内验证了Hedden猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信