Entropy and dimension of disintegrations of stationary measures

Pablo Lessa
{"title":"Entropy and dimension of disintegrations of stationary measures","authors":"Pablo Lessa","doi":"10.1090/BTRAN/60","DOIUrl":null,"url":null,"abstract":"<p>We extend a result of Ledrappier, Hochman, and Solomyak on exact dimensionality of stationary measures for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"SL Subscript 2 Baseline left-parenthesis double-struck upper R right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msub>\n <mml:mtext>SL</mml:mtext>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\text {SL}_2(\\mathbb {R})</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> to disintegrations of stationary measures for <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L left-parenthesis double-struck upper R Superscript d Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>GL</mml:mi>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>d</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\operatorname {GL}(\\mathbb {R}^d)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> onto the one dimensional foliations of the space of flags obtained by forgetting a single subspace.</p>\n\n<p>The dimensions of these conditional measures are expressed in terms of the gap between consecutive Lyapunov exponents, and a certain entropy associated to the group action on the one dimensional foliation they are defined on. It is shown that the entropies thus defined are also related to simplicity of the Lyapunov spectrum for the given measure on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L left-parenthesis double-struck upper R Superscript d Baseline right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>GL</mml:mi>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mi>d</mml:mi>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\operatorname {GL}(\\mathbb {R}^d)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/BTRAN/60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We extend a result of Ledrappier, Hochman, and Solomyak on exact dimensionality of stationary measures for SL 2 ( R ) \text {SL}_2(\mathbb {R}) to disintegrations of stationary measures for GL ( R d ) \operatorname {GL}(\mathbb {R}^d) onto the one dimensional foliations of the space of flags obtained by forgetting a single subspace.

The dimensions of these conditional measures are expressed in terms of the gap between consecutive Lyapunov exponents, and a certain entropy associated to the group action on the one dimensional foliation they are defined on. It is shown that the entropies thus defined are also related to simplicity of the Lyapunov spectrum for the given measure on GL ( R d ) \operatorname {GL}(\mathbb {R}^d) .

平稳测度分解的熵和维数
我们将Ledrappier, Hochman和Solomyak关于SL 2(R) \text {SL}_2(\mathbb {R})的平稳测度的精确维数的结果推广到GL (R d) \operatorname {GL}(\mathbb {R}^d)的平稳测度的分解到通过忽略单个子空间而得到的旗子空间的一维叶上。这些条件测度的维度用连续Lyapunov指数之间的间隙和与它们所定义的一维叶状上的群作用相关的一定熵来表示。结果表明,这样定义的熵也与给定测度GL (R d) \operatorname {GL}(\mathbb {R}^d)的李雅普诺夫谱的简单性有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信