{"title":"托雷利图局限于超椭圆轨迹","authors":"Aaron Landesman","doi":"10.1090/BTRAN/64","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g greater-than-or-equal-to 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>g</mml:mi>\n <mml:mo>≥<!-- ≥ --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">g \\geq 2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> and let the Torelli map denote the map sending a genus <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g\">\n <mml:semantics>\n <mml:mi>g</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">g</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> curve to its principally polarized Jacobian. We show that the restriction of the Torelli map to the hyperelliptic locus is an immersion in characteristic not <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In characteristic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2\">\n <mml:semantics>\n <mml:mn>2</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, we show the Torelli map restricted to the hyperelliptic locus fails to be an immersion because it is generically inseparable; moreover, the induced map on tangent spaces has kernel of dimension <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"g minus 2\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>g</mml:mi>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>2</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">g-2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> at every point.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The Torelli map restricted to the hyperelliptic locus\",\"authors\":\"Aaron Landesman\",\"doi\":\"10.1090/BTRAN/64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g greater-than-or-equal-to 2\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>g</mml:mi>\\n <mml:mo>≥<!-- ≥ --></mml:mo>\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">g \\\\geq 2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> and let the Torelli map denote the map sending a genus <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g\\\">\\n <mml:semantics>\\n <mml:mi>g</mml:mi>\\n <mml:annotation encoding=\\\"application/x-tex\\\">g</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> curve to its principally polarized Jacobian. We show that the restriction of the Torelli map to the hyperelliptic locus is an immersion in characteristic not <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2\\\">\\n <mml:semantics>\\n <mml:mn>2</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>. In characteristic <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"2\\\">\\n <mml:semantics>\\n <mml:mn>2</mml:mn>\\n <mml:annotation encoding=\\\"application/x-tex\\\">2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula>, we show the Torelli map restricted to the hyperelliptic locus fails to be an immersion because it is generically inseparable; moreover, the induced map on tangent spaces has kernel of dimension <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"g minus 2\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>g</mml:mi>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>2</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">g-2</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> at every point.</p>\",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/BTRAN/64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/BTRAN/64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Torelli map restricted to the hyperelliptic locus
Let g≥2g \geq 2 and let the Torelli map denote the map sending a genus gg curve to its principally polarized Jacobian. We show that the restriction of the Torelli map to the hyperelliptic locus is an immersion in characteristic not 22. In characteristic 22, we show the Torelli map restricted to the hyperelliptic locus fails to be an immersion because it is generically inseparable; moreover, the induced map on tangent spaces has kernel of dimension g−2g-2 at every point.