共轨理论中的核定理

P. Balázs, K. Grōchenig, M. Speckbacher
{"title":"共轨理论中的核定理","authors":"P. Balázs, K. Grōchenig, M. Speckbacher","doi":"10.1090/BTRAN/42","DOIUrl":null,"url":null,"abstract":"We prove general kernel theorems for operators acting between coorbit spaces. These are Banach spaces associated to an integrable representation of a locally compact group and contain most of the usual function spaces (Besov spaces, modulation spaces, etc.). A kernel theorem describes the form of every bounded operator between a coorbit space of test functions and distributions by means of a kernel in a coorbit space associated to the tensor product representation. As special cases we recover Feichtinger’s kernel theorem for modulation spaces and the recent generalizations by Cordero and Nicola. We also obtain a kernel theorem for operators between the Besov spaces \n\n \n \n \n \n B\n ˙\n \n \n \n 1\n ,\n 1\n \n 0\n \n \\dot {B}^0_{1,1}\n \n\n and \n\n \n \n \n \n B\n ˙\n \n \n \n ∞\n ,\n ∞\n \n \n 0\n \n \n \\dot {B}^{0}_{\\infty , \\infty }\n \n\n.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Kernel theorems in coorbit theory\",\"authors\":\"P. Balázs, K. Grōchenig, M. Speckbacher\",\"doi\":\"10.1090/BTRAN/42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove general kernel theorems for operators acting between coorbit spaces. These are Banach spaces associated to an integrable representation of a locally compact group and contain most of the usual function spaces (Besov spaces, modulation spaces, etc.). A kernel theorem describes the form of every bounded operator between a coorbit space of test functions and distributions by means of a kernel in a coorbit space associated to the tensor product representation. As special cases we recover Feichtinger’s kernel theorem for modulation spaces and the recent generalizations by Cordero and Nicola. We also obtain a kernel theorem for operators between the Besov spaces \\n\\n \\n \\n \\n \\n B\\n ˙\\n \\n \\n \\n 1\\n ,\\n 1\\n \\n 0\\n \\n \\\\dot {B}^0_{1,1}\\n \\n\\n and \\n\\n \\n \\n \\n \\n B\\n ˙\\n \\n \\n \\n ∞\\n ,\\n ∞\\n \\n \\n 0\\n \\n \\n \\\\dot {B}^{0}_{\\\\infty , \\\\infty }\\n \\n\\n.\",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/BTRAN/42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/BTRAN/42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们证明了作用于共轨空间之间的算子的一般核定理。这些是与局部紧群的可积表示相关的Banach空间,并且包含了大多数常用的函数空间(Besov空间,调制空间等)。核定理通过与张量积表示相关联的共轨空间中的核,描述了在测试函数和分布的共轨空间之间的每一个有界算子的形式。作为特例,我们恢复了调制空间的Feichtinger核定理和Cordero和Nicola最近的推广。我们还得到了Besov空间B˙1,10 \dot B^0_1,{1和}B{˙∞},∞0 \dot B{^}0_{}{\infty, \infty之间算子的核定理}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kernel theorems in coorbit theory
We prove general kernel theorems for operators acting between coorbit spaces. These are Banach spaces associated to an integrable representation of a locally compact group and contain most of the usual function spaces (Besov spaces, modulation spaces, etc.). A kernel theorem describes the form of every bounded operator between a coorbit space of test functions and distributions by means of a kernel in a coorbit space associated to the tensor product representation. As special cases we recover Feichtinger’s kernel theorem for modulation spaces and the recent generalizations by Cordero and Nicola. We also obtain a kernel theorem for operators between the Besov spaces B ˙ 1 , 1 0 \dot {B}^0_{1,1} and B ˙ ∞ , ∞ 0 \dot {B}^{0}_{\infty , \infty } .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信