What makes a complex a virtual resolution?

Michael C. Loper
{"title":"What makes a complex a virtual resolution?","authors":"Michael C. Loper","doi":"10.1090/btran/91","DOIUrl":null,"url":null,"abstract":"Virtual resolutions are homological representations of finitely generated \n\n \n \n Pic\n (\n X\n )\n \n \\text {Pic}(X)\n \n\n-graded modules over the Cox ring of a smooth projective toric variety. In this paper, we identify two algebraic conditions that characterize when a chain complex of graded free modules over the Cox ring is a virtual resolution. We then turn our attention to the saturation of Fitting ideals by the irrelevant ideal of the Cox ring and prove some results that mirror the classical theory of Fitting ideals for Noetherian rings.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"63 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Virtual resolutions are homological representations of finitely generated Pic ( X ) \text {Pic}(X) -graded modules over the Cox ring of a smooth projective toric variety. In this paper, we identify two algebraic conditions that characterize when a chain complex of graded free modules over the Cox ring is a virtual resolution. We then turn our attention to the saturation of Fitting ideals by the irrelevant ideal of the Cox ring and prove some results that mirror the classical theory of Fitting ideals for Noetherian rings.
是什么使复合体成为虚拟分辨率?
虚分辨率是光滑射影环的Cox环上有限生成的Pic (X) \text {Pic}(X) -梯度模的同调表示。在本文中,我们确定了两个代数条件,表征了Cox环上的分级自由模链复形是虚分辨率。然后,我们将注意力转向Cox环的不相关理想对拟合理想的饱和,并证明了一些反映Noetherian环拟合理想经典理论的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信