Current Opinion in Biomedical Engineering最新文献

筛选
英文 中文
Beyond small molecule-based protein targeting in the era of deep learning 深度学习时代超越基于小分子的蛋白质靶向
IF 3.9 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2023-09-09 DOI: 10.1016/j.cobme.2023.100501
Pranam Chatterjee
{"title":"Beyond small molecule-based protein targeting in the era of deep learning","authors":"Pranam Chatterjee","doi":"10.1016/j.cobme.2023.100501","DOIUrl":"https://doi.org/10.1016/j.cobme.2023.100501","url":null,"abstract":"","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49817096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cadherins and growth factor receptors: Signaling mechano-switches at intercellular junctions 钙粘蛋白和生长因子受体:细胞间连接的信号机械开关
IF 3.9 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2023-09-09 DOI: 10.1016/j.cobme.2023.100503
Deborah Leckband
{"title":"Cadherins and growth factor receptors: Signaling mechano-switches at intercellular junctions","authors":"Deborah Leckband","doi":"10.1016/j.cobme.2023.100503","DOIUrl":"https://doi.org/10.1016/j.cobme.2023.100503","url":null,"abstract":"<div><p>This review focuses on recent findings that cadherins, like integrins, mechanically initiate signaling cascades that can share elements with integrins but have distinct biological functions. Specifically, we focus on evidence that cadherins and receptor tyrosine kinases (RTKs) form mechano-switches at intercellular junctions that regulate the integrity of barrier tissues, global cell mechanics, and cell proliferation. Epithelial E-cadherin force transduction signaling is further discussed in the context of other cadherin-mediated intercellular signaling that regulates Hippo kinases and YAP localization. This article highlights similarities and differences in force transduction by three, different classical cadherins and argues that cadherins and specific RTK partners constitute general intercellular mechano-switches, with tissue-specific functions. Several examples presented demonstrate the physiological significance of this force activated cadherin/RTK signal transduction mechanism and suggest how mechanically regulated, cadherin-dependent signaling could be harnessed to tune tissue-specific functions.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49857657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensory restoration for improved motor control of prostheses 改善假肢运动控制的感觉恢复
IF 3.9 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2023-09-03 DOI: 10.1016/j.cobme.2023.100498
Lee E. Fisher , Robert A. Gaunt , He Huang
{"title":"Sensory restoration for improved motor control of prostheses","authors":"Lee E. Fisher ,&nbsp;Robert A. Gaunt ,&nbsp;He Huang","doi":"10.1016/j.cobme.2023.100498","DOIUrl":"10.1016/j.cobme.2023.100498","url":null,"abstract":"<div><p>Somatosensory neuroprostheses are devices with the potential to restore the senses of touch and movement from prosthetic limbs for people with limb amputation or paralysis. By electrically stimulating the peripheral or central nervous system, these devices evoke sensations that appear to emanate from the missing or insensate limb, and when paired with sensors on the prosthesis, they can improve the functionality and embodiment of the prosthesis. There have been major advances in the design of these systems over the past decade, although several important steps remain before they can achieve widespread clinical adoption outside the lab setting. Here, we provide a brief overview of somatosensory neuroprostheses and explores these hurdles and potential next steps towards clinical translation.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41662712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
“Sustainable open-source medical devices manufactured with green biomaterials and accessible resources” “使用绿色生物材料和可获取资源制造的可持续开源医疗设备”
IF 3.9 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2023-09-03 DOI: 10.1016/j.cobme.2023.100500
Andrés Díaz Lantada , Carmelo De Maria
{"title":"“Sustainable open-source medical devices manufactured with green biomaterials and accessible resources”","authors":"Andrés Díaz Lantada ,&nbsp;Carmelo De Maria","doi":"10.1016/j.cobme.2023.100500","DOIUrl":"10.1016/j.cobme.2023.100500","url":null,"abstract":"<div><p>Additive manufacturing technologies, especially affordable 3D printers and bioprinters, emerge as sustainability promotion resources, thanks to the possibility of processing green and circular biomaterials from industrial waste, creating value with them. Among industries benefiting from these possibilities, healthcare sector, which takes advantage from the personalization degree of biomedical devices and products achievable through 3D (bio)printing, stands out as socially impactful. Indeed, biomedical devices manufactured with green and circular biomaterials using accessible resources can contribute to achieving equitable and eco-efficient solutions, while generating economic growth and decent work. This is of special relevance for low and middle-income settings, which may benefit from point-of-care production of medical technologies for solving challenging supply chain issues, directly manufacturing open-source solutions from the cloud and employing do-it-yourself materials. In order to generate debate on how to promote the impacts in this area, the current study summarizes research and innovation trends and discusses existing capabilities and challenges. Opinions of authors are presented and supported by an important set of publications and projects focused on healthcare equity and sustainability.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46637089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Nature-inspired sustainable medical materials 自然启发的可持续医疗材料
IF 3.9 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2023-09-03 DOI: 10.1016/j.cobme.2023.100499
Matthew H.W. Chin, Julia Linke, Marc-Olivier Coppens
{"title":"Nature-inspired sustainable medical materials","authors":"Matthew H.W. Chin,&nbsp;Julia Linke,&nbsp;Marc-Olivier Coppens","doi":"10.1016/j.cobme.2023.100499","DOIUrl":"10.1016/j.cobme.2023.100499","url":null,"abstract":"<div><p>As life expectancy increases and health crises arise, our demand for medical materials is higher than ever. There has been, nevertheless, a concomitant increase in the reliance on traditional fabrication and disposal methods, which are environmentally harmful and energy intensive. Therefore, technologies need adaptations to ensure a more sustainable future for medicine. Such technological improvements could be designed by taking inspiration from nature, where the concept of “waste” is virtually non-existent. These nature-inspired solutions can be engineered into the lifecycle of medical materials at different points, from raw materials and fabrication to application and recycling. To achieve this, we present four technological developments as promising enablers – surface patterning, additive manufacturing, microfluidics, and synthetic biology. For each enabler, we discuss how sustainable solutions can be designed based on current understanding of, and ongoing research on, natural systems or concepts, including shark skin, decentralised manufacturing, process intensification, and synthetic biology.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48804500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial intelligence for biomedical engineering of polysaccharides: A short overview 人工智能在多糖生物医学工程中的应用综述
IF 3.9 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2023-09-01 DOI: 10.1016/j.cobme.2023.100463
Hanieh Shokrani , Amirhossein Shokrani , Farzad Seidi , Justyna Kucińska-Lipka , Balbina Makurat-Kasprolewicz , Mohammad Reza Saeb , Seeram Ramakrishna
{"title":"Artificial intelligence for biomedical engineering of polysaccharides: A short overview","authors":"Hanieh Shokrani ,&nbsp;Amirhossein Shokrani ,&nbsp;Farzad Seidi ,&nbsp;Justyna Kucińska-Lipka ,&nbsp;Balbina Makurat-Kasprolewicz ,&nbsp;Mohammad Reza Saeb ,&nbsp;Seeram Ramakrishna","doi":"10.1016/j.cobme.2023.100463","DOIUrl":"https://doi.org/10.1016/j.cobme.2023.100463","url":null,"abstract":"<div><p>The advent of computer-aided concepts and cognitive algorithms, along with fuzzy sets and fuzzy logic thoughts, supported the idea of ‘making computers think like people’ (Lotfi A. Zadeh, <em>IEEE Spectrum</em>, 21 (26–32), 1984). Such a school of thought enabled the sophistication of mission-oriented development of biomaterials and biosystems with the aid of ‘Artificial Intelligence’ (AI). Since polysaccharides (PSA) are medically safe and rely on stimuli-responsiveness, we herein highlight the importance of using AI-based algorithms in PSA-based biomedical engineering. Since manufacturing PSA-based biomaterials by AI experiences a very early stage of maturity, pattern recognition and behavior visualization by ‘Machine Learning’ (ML) models are not stressed herein. Nevertheless, exceptional chemical features of PSA such as surface modification and high adaptability facilitate ML-aided innovations. PSA-based biomaterials reveal diverse biomedical properties; therefore, summarizing, sorting, and recalling the best scenarios and optimization of the performance features of PSA still seems far from reach. We just highlight herein PSA-based biomedical engineering by the aid of AI to establish an agenda for the future. Herein, the outlook of targeted drug delivery vehicles, skin tissue engineering templates, wound healing systems, cancer treatment platforms, biosensors, personalized detection complexes, and particularly AI-aided bioprinting are generally covered.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49815352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable electrospun materials with enhanced blood compatibility for wound healing applications—A mini review 具有增强血液相容性的可持续静电纺丝材料用于伤口愈合应用-一个小回顾
IF 3.9 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2023-09-01 DOI: 10.1016/j.cobme.2023.100457
Mohan Prasath Mani , Ahmad Athif Mohd Faudzi , Seeram Ramakrishna , Ahmad Fauzi Ismail , Saravana Kumar Jaganathan , Nick Tucker , Rajasekar Rathanasamy
{"title":"Sustainable electrospun materials with enhanced blood compatibility for wound healing applications—A mini review","authors":"Mohan Prasath Mani ,&nbsp;Ahmad Athif Mohd Faudzi ,&nbsp;Seeram Ramakrishna ,&nbsp;Ahmad Fauzi Ismail ,&nbsp;Saravana Kumar Jaganathan ,&nbsp;Nick Tucker ,&nbsp;Rajasekar Rathanasamy","doi":"10.1016/j.cobme.2023.100457","DOIUrl":"10.1016/j.cobme.2023.100457","url":null,"abstract":"<div><p>Wound healing is a complex process that requires an appropriate environment to support healing. Wound dressings play a crucial role in wound management by protecting the wound and promoting healing. Recent advancements in wound dressing technology include the development of bio-absorbable electrospun dressings incorporating essential oils, which have shown promise in enhancing wound healing potential. However, there is still a need for sustainable wound dressing technology that is effective, safe, and environmentally friendly. This review addresses this need by emphasizing the potential of bio-absorbable electrospun wound dressings incorporating essential oils and advocating for a paradigm shift toward sustainable crop-origin materials and the elimination of toxic solvents in wound dressing fabrication.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45371690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Editorial overview - Neural engineering: Traumatic brain injury 编辑综述-神经工程:创伤性脑损伤
IF 3.9 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2023-09-01 DOI: 10.1016/j.cobme.2023.100468
Lakiesha N. Williams, Michelle C. LaPlaca
{"title":"Editorial overview - Neural engineering: Traumatic brain injury","authors":"Lakiesha N. Williams,&nbsp;Michelle C. LaPlaca","doi":"10.1016/j.cobme.2023.100468","DOIUrl":"10.1016/j.cobme.2023.100468","url":null,"abstract":"","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49370142","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mining microbial organisms to discover and characterize novel CRISPR-Cas systems 挖掘微生物以发现和表征新型CRISPR-Cas系统
IF 3.9 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2023-09-01 DOI: 10.1016/j.cobme.2023.100469
Ourania Raftopoulou , Rodolphe Barrangou
{"title":"Mining microbial organisms to discover and characterize novel CRISPR-Cas systems","authors":"Ourania Raftopoulou ,&nbsp;Rodolphe Barrangou","doi":"10.1016/j.cobme.2023.100469","DOIUrl":"https://doi.org/10.1016/j.cobme.2023.100469","url":null,"abstract":"<div><p>The need for new genome manipulation tools is leading the way for the continued discovery of novel clustered regularly interspaced short palindromic repeats— CRISPR associated sequences (CRISPR-Cas) systems. Researchers have been analyzing the genomes of prokaryotes and more recently metagenomic sequencing data to find novel and diverse CRISPR-Cas systems and their associated genome editing effectors. In this review, we provide an overview of <em>in silico</em>, <em>in vitro</em>, and <em>in vivo</em> analyses performed to characterize key elements of CRISPR-Cas systems, encompassing the CRISPR array, Cas proteins, guide ribonucleic acid (RNAs), and protospacer-adjacent motif (PAM) which defines targeting. We also highlight subsequent <em>in vitro</em> and <em>in vivo</em> assays employed to validate CRISPR function and Cas effector activity in the context of genome editing in various cellular contexts.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49815321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Corrigendum to “Emerging trends of discrete Poly(ethylene glycol) in biomedical applications” [Curr Opin Biomed Eng 24 (2022) 100419] “离散聚乙二醇在生物医学应用中的新兴趋势”更正[Curr Opin Biomed Eng 24(2022)100419]
IF 3.9 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2023-09-01 DOI: 10.1016/j.cobme.2023.100467
Jinming Hu, Shiyong Liu
{"title":"Corrigendum to “Emerging trends of discrete Poly(ethylene glycol) in biomedical applications” [Curr Opin Biomed Eng 24 (2022) 100419]","authors":"Jinming Hu,&nbsp;Shiyong Liu","doi":"10.1016/j.cobme.2023.100467","DOIUrl":"https://doi.org/10.1016/j.cobme.2023.100467","url":null,"abstract":"","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":3.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49815353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信