Current Opinion in Biomedical Engineering最新文献

筛选
英文 中文
Synthetically programming natural cell–cell communication pathways for tissue engineering 合成编程组织工程中的天然细胞-细胞通讯途径
IF 4.7 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2024-08-24 DOI: 10.1016/j.cobme.2024.100554
{"title":"Synthetically programming natural cell–cell communication pathways for tissue engineering","authors":"","doi":"10.1016/j.cobme.2024.100554","DOIUrl":"10.1016/j.cobme.2024.100554","url":null,"abstract":"<div><p>Tissue patterning, the process of localizing different cell types to the right place, is critical for tissue function and thus a central goal for tissue engineering. Developing embryos employ diverse cell interaction-based mechanisms to robustly pattern tissues, such as specifying different regions of the central nervous system and aligning all the hair cells in the inner ear. These events range in lengthscale and must all be specified with cell-level precision, imposing challenges for recreating such patterns <em>in vitro</em> using conventional engineering approaches. Synthetic developmental biology as an emerging field provides a complementary approach for patterning tissues, by harnessing the molecular mechanisms used by natural tissues to program self-organizing behavior of the cells. Here we review advances in adapting these modules to program cells in culture. These modules could potentially be used for biomedical tissue engineering, as a complement to existing methods for generating morphologically complex multi-cell-type tissues <em>in vitro</em>.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142229091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational modeling of autonomic nerve stimulation: Vagus et al. 自律神经刺激的计算建模:Vagus et al.
IF 4.7 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2024-08-24 DOI: 10.1016/j.cobme.2024.100557
{"title":"Computational modeling of autonomic nerve stimulation: Vagus et al.","authors":"","doi":"10.1016/j.cobme.2024.100557","DOIUrl":"10.1016/j.cobme.2024.100557","url":null,"abstract":"<div><p>Computational models of electrical stimulation, block and recording of autonomic nerves enable analysis of mechanisms of action underlying neural responses and design of optimized stimulation parameters. We reviewed advances in computational modeling of autonomic nerve stimulation, block, and recording over the past five years, with a focus on vagus nerve stimulation, including both implanted and less invasive approaches. Few models achieved quantitative validation, but integrated computational pipelines increase the reproducibility, reusability, and accessibility of computational modeling. Model-based optimization enabled design of electrode geometries and stimulation parameters for selective activation (across fiber locations or types). Growing efforts link models of neural activity to downstream physiological responses to represent more directly the therapeutic effects and side effects of stimulation. Thus, computational modeling is an increasingly important tool for analysis and design of bioelectronic therapies.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142172333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What can protein circuit design learn from DNA nanotechnology? 蛋白质电路设计能从 DNA 纳米技术中学到什么?
IF 4.7 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2024-08-21 DOI: 10.1016/j.cobme.2024.100556
{"title":"What can protein circuit design learn from DNA nanotechnology?","authors":"","doi":"10.1016/j.cobme.2024.100556","DOIUrl":"10.1016/j.cobme.2024.100556","url":null,"abstract":"<div><p>Protein circuit design is still in its infancy in terms of programmability. DNA nanotechnology, however, excels at this property and its community has created a myriad of circuits and assemblies following modular hierarchical design rules. In this mini-review, we reason that the rationales behind DNA nanotechnology can nurture protein circuit design, and the unique versatility orchestrated by groups of proteins can be further exploited to program cells. Community efforts to develop databases and design algorithms for standardizing and customizing protein modules could bring the programmability of protein circuits to a level comparable to DNA nanotechnology, ultimately empowering modular hierarchical protein circuit design.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468451124000369/pdfft?md5=cf29dc67463354b598e20a7ff8da02c1&pid=1-s2.0-S2468451124000369-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perspectives on synthetic protein circuits in mammalian cells 哺乳动物细胞中合成蛋白质回路的前景
IF 4.7 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2024-08-14 DOI: 10.1016/j.cobme.2024.100555
{"title":"Perspectives on synthetic protein circuits in mammalian cells","authors":"","doi":"10.1016/j.cobme.2024.100555","DOIUrl":"10.1016/j.cobme.2024.100555","url":null,"abstract":"<div><p>Mammalian synthetic biology aims to engineer cellular behaviors for therapeutic applications, such as enhancing immune cell efficacy against cancers or improving cell transplantation outcomes. Programming complex biological functions necessitates an understanding of molecular mechanisms governing cellular responses to stimuli. Traditionally, synthetic biology has focused on transcriptional circuits, but recent advances have led to the development of synthetic protein circuits, leveraging programmable binding, proteolysis, or phosphorylation to modulate protein interactions and cellular functions. These circuits offer advantages including robust performance, rapid functionality, and compact design, making them suitable for cellular engineering or gene therapies. This review outlines the post-translational toolkit, emphasizing synthetic protein components utilizing proteolysis or phosphorylation to program mammalian cell behaviors. Finally, we focus on key differences between rewiring native signaling pathways and creating orthogonal behaviors, alongside a proposed framework for translating synthetic protein circuits from tool development to pre-clinical applications in biomedicine.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142151104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using machine learning to enhance and accelerate synthetic biology 利用机器学习增强和加速合成生物学
IF 4.7 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2024-08-02 DOI: 10.1016/j.cobme.2024.100553
{"title":"Using machine learning to enhance and accelerate synthetic biology","authors":"","doi":"10.1016/j.cobme.2024.100553","DOIUrl":"10.1016/j.cobme.2024.100553","url":null,"abstract":"<div><p>Engineering synthetic regulatory circuits with precise input–output behavior—a central goal in synthetic biology—remains encumbered by the inherent molecular complexity of cells. Non-linear, high-dimensional interactions between genetic parts and host cell machinery make it difficult to design circuits using first-principles biophysical models. We argue that adopting data-driven approaches that integrate modern machine learning (ML) tools and high-throughput experimental approaches into the synthetic biology design/build/test/learn process could dramatically accelerate the pace and scope of circuit design, yielding workflows that rapidly and systematically discern design principles and achieve quantitatively precise behavior. Current applications of ML to circuit design are occurring at three distinct scales: 1) learning relationships between part sequence and function; 2) determining how part composition determines circuit behavior; 3) understanding how function varies with genomic/host-cell context. This work points toward a future where ML-driven genetic design is used to program robust solutions to complex problems across diverse biotechnology domains.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regeneration of interfaces bridging disparate tissues and systems of the human body 连接人体不同组织和系统的界面再生
IF 4.7 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2024-07-11 DOI: 10.1016/j.cobme.2024.100552
{"title":"Regeneration of interfaces bridging disparate tissues and systems of the human body","authors":"","doi":"10.1016/j.cobme.2024.100552","DOIUrl":"10.1016/j.cobme.2024.100552","url":null,"abstract":"","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141688761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Where the wild molecules are: Engineering the spatial distribution of signaling molecules 野生分子在哪里?信号分子空间分布工程学
IF 4.7 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2024-07-08 DOI: 10.1016/j.cobme.2024.100551
{"title":"Where the wild molecules are: Engineering the spatial distribution of signaling molecules","authors":"","doi":"10.1016/j.cobme.2024.100551","DOIUrl":"10.1016/j.cobme.2024.100551","url":null,"abstract":"<div><p>The spatial distribution of the signaling molecules that mediate cell–cell communication and pattern formation is an important consideration for natural and engineered multicellular systems.</p><p>Signaling molecule concentration profiles directly impact cell response profiles, and various experimental techniques can be utilized to modulate these spatial distributions. Current strategies focused on physically or chemically modifying the extracellular space to affect signal distribution include performing experiments in microfluidic devices with dynamic user-controlled inputs and flow rates or adjusting the mesh sizes and protein binding affinities of extracellular matrix-mimicking hydrogels. Recent advances in synthetic biology have paved the way for new approaches that involve directly engineering the signaling molecules, their interactors, and their downstream effectors for fully orthogonal communication platforms.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141692207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploiting protein domain modularity to enable synthetic control of engineered cells 利用蛋白质结构域模块化实现对工程细胞的合成控制
IF 4.7 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2024-07-02 DOI: 10.1016/j.cobme.2024.100550
{"title":"Exploiting protein domain modularity to enable synthetic control of engineered cells","authors":"","doi":"10.1016/j.cobme.2024.100550","DOIUrl":"10.1016/j.cobme.2024.100550","url":null,"abstract":"<div><p>The ability to precisely control cellular function in response to external stimuli can enhance the function and safety of cell therapies. In this review, we will detail how the modularity of protein domains has been exploited for cellular control applications, specifically through design of multifunctional synthetic constructs and controllable split moieties. These advances, which build on techniques developed by biologists, protein chemists and drug developers, harness natural evolutionary tendencies of protein domain fusion and fission. In this light, we will highlight recent advances towards the development of novel immunoreceptors, base editors, and cytokines that have achieved intriguing therapeutic potential by taking advantage of well-known protein evolutionary phenomena and have helped cells learn new tricks via synthetic biology. In general, protein modularity, i.e., the relatively facile separation or (re)assembly of functional single protein domains or subdomains, is becoming an enabling phenomenon for cellular engineering by allowing enhanced control of phenotypic responses.</p></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141692799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regenerative rehabilitation: Looking back and thinking forward 再生康复:回顾过去,展望未来
IF 4.7 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2024-06-28 DOI: 10.1016/j.cobme.2024.100548
{"title":"Regenerative rehabilitation: Looking back and thinking forward","authors":"","doi":"10.1016/j.cobme.2024.100548","DOIUrl":"10.1016/j.cobme.2024.100548","url":null,"abstract":"","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141636654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in strategies for liver regeneration and replacement 肝脏再生和替代战略的进展
IF 4.7 3区 工程技术
Current Opinion in Biomedical Engineering Pub Date : 2024-06-28 DOI: 10.1016/j.cobme.2024.100549
{"title":"Advances in strategies for liver regeneration and replacement","authors":"","doi":"10.1016/j.cobme.2024.100549","DOIUrl":"10.1016/j.cobme.2024.100549","url":null,"abstract":"","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141637553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信