{"title":"Spatiotemporally-patterned biomaterials for organoid culture","authors":"Luis F. Arrieta-Viana , Andrés J. García","doi":"10.1016/j.cobme.2025.100594","DOIUrl":"10.1016/j.cobme.2025.100594","url":null,"abstract":"<div><div>Spatiotemporally-patterned biomaterials have emerged as powerful tools for enhancing organoid development and functionality by recreating the dynamic complexity of native tissues. Recent innovations in photopatterning, bioprinting, and stimuli-responsive materials have expanded our ability to control the cellular microenvironment with remarkable precision. These advances have significantly improved our ability to control organoid development, leading to better structural organization and functionality. However, transitioning from proof-of-concept studies to standardized, scalable platforms remains challenging. Breakthrough technologies developed in recent years have transformed organoid applications and accelerated their translation. We suggest that the integration of multiple control systems, especially through microfluidics and “smart” materials, offers the most promising path toward realizing the full potential of organoid technologies.</div></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"35 ","pages":"Article 100594"},"PeriodicalIF":4.7,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144123466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Porous microneedles: Transdermal salt bridge for biomedical device engineering","authors":"Gaobo Wang , Yuina Abe , Soichiro Tottori , Shuto Osaki , Matsuhiko Nishizawa","doi":"10.1016/j.cobme.2025.100593","DOIUrl":"10.1016/j.cobme.2025.100593","url":null,"abstract":"<div><div>Microneedles (MNs) are an attractive option as a minimally invasive means to break through the stratum corneum of the skin for transdermal drug delivery and the analysis of interstitial fluid. The solid-based porous microneedle (PMN) is a relatively new type of MN with a micro/nanochannel network throughout the whole needle. The PMN, filled with an electrolyte solution serves as a ‘salt bridge’ to create an ionic pathway across the skin surface layer. This review outlines the advantages of the ionically conductive PMN from a biomedical engineering perspective. After a brief description of the fabrication techniques of PMN, the decrease in transdermal resistance by PMN insertion is quantitatively discussed. In addition, possible applications of PMN-based salt bridges are presented, including the skin potential and resistance measurements, intradermal electrochemical analysis, and transdermal molecular transport.</div></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"35 ","pages":"Article 100593"},"PeriodicalIF":4.7,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144138158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fadoua El Abdellaoui Soussi , Francesco Piraino , Janine Scholefield , Sylke Hoehnel-Ka , Magdalena Kasendra
{"title":"Diversity in a dish: Leveraging organoids to reflect genetic ancestry and sex differences in health and disease","authors":"Fadoua El Abdellaoui Soussi , Francesco Piraino , Janine Scholefield , Sylke Hoehnel-Ka , Magdalena Kasendra","doi":"10.1016/j.cobme.2025.100592","DOIUrl":"10.1016/j.cobme.2025.100592","url":null,"abstract":"<div><div>The interplay between genetic ancestry and biological sex is increasingly recognized as a critical factor influencing health outcomes, treatment efficacy, and drug toxicity. Current research highlights significant disparities in disease susceptibility and therapeutic responses across different ancestral groups and sexes, with underrepresentation of diverse populations in genomic studies impeding progress. Most Genome-Wide Association Studies (GWAS) remain predominantly European, hindering the development of accurate polygenic risk scores (PRS). Additionally, sex-related differences in drug metabolism, immune response, and disease prevalence necessitate sex-stratified analyses. This review underscores the potential of advanced <em>in vitro</em> models, particularly human pluripotent stem cells (hPSCs) and adult stem cell-derived organoids, to bridge these gaps by providing platforms that reflect human genetic diversity and facilitate high-throughput screening. By integrating diverse genetic data and leveraging donor/population-specific organoid models’ researchers can uncover critical genotype-phenotype associations that enhance understanding of health disparities and improve pharmacogenomic applications. To increase reproducibility and throughput, standardized protocols, implementing automation, and employing organoid arrays along with well-controlled pooled populations can streamline workflows and enhance repeatability across studies and geographies. This approach fosters personalized medicine aimed at optimizing treatment efficacy and reducing adverse reactions across diverse populations, promoting equitable healthcare outcomes.</div></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"35 ","pages":"Article 100592"},"PeriodicalIF":4.7,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144089034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haoran Gong , Wenwen Weng , Shuhao Zhang , Zhigang Gao , Ning Hu
{"title":"Rigid and soft microelectrodes for electrophysiology measurement","authors":"Haoran Gong , Wenwen Weng , Shuhao Zhang , Zhigang Gao , Ning Hu","doi":"10.1016/j.cobme.2025.100591","DOIUrl":"10.1016/j.cobme.2025.100591","url":null,"abstract":"<div><div>Electrophysiology measurement is a significant technique to detect electrical activities and analyze cell behaviors. Among various electrophysiological detection methods, microelectrode arrays (MEAs) have been widely investigated in recent years due to their high efficiency and accuracy in analyzing electrophysiological activities of cells and tissues. Rigid MEAs, favored for their convenience and scalability, are widely used in drug selection, pathological analysis, and photothermal research. Soft MEAs, with the flexible geometries and outstanding biocompatibility, are better suited for applications involving three-dimensional organoids. This review provides an overview of recent advances in rigid and soft MEAs over the past five years, focusing on their application in cardiology and neuroscience.</div></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"34 ","pages":"Article 100591"},"PeriodicalIF":4.7,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143927983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanism to translation: Neural prostheses for the lower urinary tract","authors":"Maria K. Jantz , Robert A. Gaunt","doi":"10.1016/j.cobme.2025.100590","DOIUrl":"10.1016/j.cobme.2025.100590","url":null,"abstract":"<div><div>Lower urinary tract (LUT) dysfunction is a common symptom of a wide array of neural disorders, including spinal cord injury, multiple sclerosis, and Parkinson's disease. Unfortunately, interventions to treat LUT dysfunction primarily manage symptoms without restoring coordinated bladder control. To regain this control, neural prostheses are being developed that operate through multiple neurophysiological mechanisms.</div><div>Here, we discuss recent advances that use three fundamentally different mechanisms; some systems target LUT reflexes to produce coordinated voiding or continence, others drive non-LUT circuits that indirectly influence bladder and urethral function, while others directly excite or block the motor components of the LUT. The work described here demonstrates substantial advances in the field, yet many of these advances have not been translated to clinical use. We suggest that developing devices to transform the state of clinical bladder care will require that known translational challenges are considered from the outset, even in basic mechanistic research.</div></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"34 ","pages":"Article 100590"},"PeriodicalIF":4.7,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143882332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interplay between extracellular matrix mechanics and cell function in mechanobiology","authors":"Peter A. Galie , Paul A. Janmey","doi":"10.1016/j.cobme.2025.100589","DOIUrl":"10.1016/j.cobme.2025.100589","url":null,"abstract":"<div><div>Tissues are composites of cells and extracellular matrix that interact with each other both chemically and mechanically to form functioning organs with defined chemical and physical properties. Changes in the physical properties of the extracellular matrix often alter the function of cells, and reciprocally, modified cell function remodels the extracellular matrix in a complex iterative process that mediates normal development, wound healing, and pathological dysfunction. Recent advances in studying how cells and matrix physically interact with each other reveal new aspects of tissue and matrix mechanics and identify potential targets for therapeutic intervention in pathologic settings.</div></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"34 ","pages":"Article 100589"},"PeriodicalIF":4.7,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143848311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mridu Malik , Stecia A. Steele , Deepshikha Mitra , Christopher J. Long , James J. Hickman
{"title":"Trans-epithelial/endothelial electrical resistance (TEER): Current state of integrated TEER measurements in organ-on-a-chip devices","authors":"Mridu Malik , Stecia A. Steele , Deepshikha Mitra , Christopher J. Long , James J. Hickman","doi":"10.1016/j.cobme.2025.100588","DOIUrl":"10.1016/j.cobme.2025.100588","url":null,"abstract":"<div><div>Trans-epithelial/endothelial electrical resistance (TEER) is a non-invasive and quick method of assessing the integrity of barrier tissues. Traditional TEER measurement methods such as chopstick electrode-based and chamber-based measurements work well with static, Transwell-based models; however, the same methods do not directly apply to human-on-a-chip or organ-on-a-chip (OOC) platforms. With the wide variety of organ-on-a-chip devices, innovative designs to accurately measure TEER, without disturbing cells, are customized for various devices. Wire electrode integration, integrating a two-probe or four-probe technique, flexible printed circuit boards or multi-electrode glass substrate-based methods are some of the TEER measurement setups being utilized in conjunction with OOC systems. The variability in measurement setups associated with OOCs make standardization challenging; however, the field is working towards establishing guidelines on acceptable TEER values for different OOC constructs.</div></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"34 ","pages":"Article 100588"},"PeriodicalIF":4.7,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143838090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alejandro Forigua , Benjamin E. Campbell , Christopher Moraes
{"title":"Emerging views of biomechanics via embedded sensors in model tissues: Pathways to the clinic","authors":"Alejandro Forigua , Benjamin E. Campbell , Christopher Moraes","doi":"10.1016/j.cobme.2025.100587","DOIUrl":"10.1016/j.cobme.2025.100587","url":null,"abstract":"<div><div>Mechanical features of tissues have been recognised as key drivers of disease progression and are increasingly investigated as diagnostic and therapeutic targets. Engineered tissue models with integrated embedded biomechanical sensors have recently uncovered complex mechanical behaviors across micro- and nanoscale environments, offering novel insights into developmental and disease mechanisms. This short opinion synthesizes emerging mechanical signatures that have been identified at high measurement sensitivities and spatial resolutions by embedding customized biomechanical sensors into engineered tissues, particularly for soft tissue pathologies like cancer and fibrosis. We then describe the challenges of achieving these increased resolutions in clinical practice, and highlight recent innovative strategies that may ultimately bridge these gaps. If successful, these improved biomechanical measurement systems could open new pathways for improving diagnostics and patient outcomes.</div></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"34 ","pages":"Article 100587"},"PeriodicalIF":4.7,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143725693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marc Vila Cuenca , Merve Bulut , Christine L. Mummery , Valeria V. Orlova
{"title":"Vascularization of organoid microenvironments: Perfusable networks for organoid growth and maturation","authors":"Marc Vila Cuenca , Merve Bulut , Christine L. Mummery , Valeria V. Orlova","doi":"10.1016/j.cobme.2025.100586","DOIUrl":"10.1016/j.cobme.2025.100586","url":null,"abstract":"<div><div>Generation of functional vasculature within organoids is considered important for their development and maturation. However, direct differentiation of endothelial cells (ECs) in organoids remains challenging so that creating fully perfusable vasculature often still requires transplantation into host animals. This review discusses recent strategies for generating pre-vascularized human pluripotent stem cell (hPSC)-derived organoids, that include co-differentiation of ECs using growth factors or (an inducible transcription factor) ETV2, controlled assembly of tissue organoids with hPSC-derived ECs or Blood Vessel Organoids (BVOs), and 3D bioprinting. Additionally, the potential and key challenges of organ-on-chip technology for creating perfusable and functional vascular networks in organoids are explored, highlighting their implications for advancing research and improving experimental models of human tissue and disease.</div></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"34 ","pages":"Article 100586"},"PeriodicalIF":4.7,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143681863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sophia Epstein , Joshua Chang , Daniel Johnston , David Paydarfar
{"title":"Size principles governing selective neuromodulation and recruitment order of nerve fibers","authors":"Sophia Epstein , Joshua Chang , Daniel Johnston , David Paydarfar","doi":"10.1016/j.cobme.2025.100583","DOIUrl":"10.1016/j.cobme.2025.100583","url":null,"abstract":"<div><div>Exogenous electrical stimulation of peripheral nerves preferentially activates the larger diameter fibers due to the lower applied current (or voltage) needed for their activation. However, the ability to selectively stimulate small fibers, and sparing large fibers, would have an important role in clinical applications. This review elucidates the biophysical basis and clinical significance of achieving fiber size-specific recruitment in neuromodulation therapies. We evaluate various methodologies designed to modulate recruitment patterns, including spatial electrical modulation techniques such as electrode configuration and field shaping, temporal modulation strategies involving pulse parameter adjustments. Other neuromodulating technologies are reviewed, including focused ultrasound, optogenetics, and chemogenetics. We discuss the limitations of current techniques and directions for future research to enhance the precision of nerve fiber recruitment, thereby optimizing therapeutic efficacy.</div></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"34 ","pages":"Article 100583"},"PeriodicalIF":4.7,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143643834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}