{"title":"基于透明质酸的大脑微环境模型:挑战和进展","authors":"Anna Weldy , Sanjay Kumar","doi":"10.1016/j.cobme.2025.100613","DOIUrl":null,"url":null,"abstract":"<div><div>While hyaluronic acid (HA) extracellular matrix (ECM) models continue to provide valuable insights into brain physiology and disease, much room for improvement remains in terms of capturing the cellular and structural complexity of the brain microenvironment. Here we review next-generation HA models that are aimed at better capturing brain microenvironmental complexity. We discuss functionalization and crosslinking strategies designed to improve HA stability and biocompatibility. We also cover efforts to incorporate ECM proteins and stromal elements into HA hydrogels, including astrocytes, endothelial cells, and macrophages. We conclude with a brief discussion of nascent advancements and applications of these models, ranging from the reconstruction of multicellular stromal structures to the development of high-throughput screening platforms. This new suite of matrix technologies and the resulting applications should contribute greatly to mechanistic and therapeutic discovery in brain physiology and disease.</div></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"35 ","pages":"Article 100613"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyaluronic acid-based models of the brain microenvironment: Challenges and advances\",\"authors\":\"Anna Weldy , Sanjay Kumar\",\"doi\":\"10.1016/j.cobme.2025.100613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>While hyaluronic acid (HA) extracellular matrix (ECM) models continue to provide valuable insights into brain physiology and disease, much room for improvement remains in terms of capturing the cellular and structural complexity of the brain microenvironment. Here we review next-generation HA models that are aimed at better capturing brain microenvironmental complexity. We discuss functionalization and crosslinking strategies designed to improve HA stability and biocompatibility. We also cover efforts to incorporate ECM proteins and stromal elements into HA hydrogels, including astrocytes, endothelial cells, and macrophages. We conclude with a brief discussion of nascent advancements and applications of these models, ranging from the reconstruction of multicellular stromal structures to the development of high-throughput screening platforms. This new suite of matrix technologies and the resulting applications should contribute greatly to mechanistic and therapeutic discovery in brain physiology and disease.</div></div>\",\"PeriodicalId\":36748,\"journal\":{\"name\":\"Current Opinion in Biomedical Engineering\",\"volume\":\"35 \",\"pages\":\"Article 100613\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468451125000388\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451125000388","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Hyaluronic acid-based models of the brain microenvironment: Challenges and advances
While hyaluronic acid (HA) extracellular matrix (ECM) models continue to provide valuable insights into brain physiology and disease, much room for improvement remains in terms of capturing the cellular and structural complexity of the brain microenvironment. Here we review next-generation HA models that are aimed at better capturing brain microenvironmental complexity. We discuss functionalization and crosslinking strategies designed to improve HA stability and biocompatibility. We also cover efforts to incorporate ECM proteins and stromal elements into HA hydrogels, including astrocytes, endothelial cells, and macrophages. We conclude with a brief discussion of nascent advancements and applications of these models, ranging from the reconstruction of multicellular stromal structures to the development of high-throughput screening platforms. This new suite of matrix technologies and the resulting applications should contribute greatly to mechanistic and therapeutic discovery in brain physiology and disease.