Lefkothea Antonara , Efstathia Triantafyllopoulou , Maria Chountoulesi , Natassa Pippa , Nefeli Lagopati , Paraskevas P. Dallas , Dimitrios M. Rekkas , Maria Gazouli
{"title":"基于niosome的透皮给药系统的最新进展","authors":"Lefkothea Antonara , Efstathia Triantafyllopoulou , Maria Chountoulesi , Natassa Pippa , Nefeli Lagopati , Paraskevas P. Dallas , Dimitrios M. Rekkas , Maria Gazouli","doi":"10.1016/j.cobme.2025.100603","DOIUrl":null,"url":null,"abstract":"<div><div>Niosomes are promising drug delivery nanosystems for transdermal administration. They exhibit several advantages for drug delivery and targeting applications, (i.e. biocompatibility, increased physical stability, modified drug release properties, low cost, and easy scale-up). Additionally, they are deemed as favorable candidates caused by their capability to enhance skin permeation, which is the main challenge in transcutaneous delivery. The aim of this review is to summarize from a critical point of view the most recent niosome-based nanoparticulate formulations for transdermal administration and their added value in pharmaceutical technology and engineering. The formulation protocols, the main excipients and Active Pharmaceutical Ingredients (APIs), and the main physicochemical and biological properties and applications of niosome-based transdermal drug delivery systems are discussed and analyzed. Taking into account their scale-up in the pharmaceutical industry, the critical quality attributes (CQAs), along with the most critical design and process parameters, are reviewed in depth, while existing limitations are also considered. Niosomes are candidate drug delivery platforms with added value in transdermal administration.</div></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"35 ","pages":"Article 100603"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in niosome-based transdermal drug delivery systems\",\"authors\":\"Lefkothea Antonara , Efstathia Triantafyllopoulou , Maria Chountoulesi , Natassa Pippa , Nefeli Lagopati , Paraskevas P. Dallas , Dimitrios M. Rekkas , Maria Gazouli\",\"doi\":\"10.1016/j.cobme.2025.100603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Niosomes are promising drug delivery nanosystems for transdermal administration. They exhibit several advantages for drug delivery and targeting applications, (i.e. biocompatibility, increased physical stability, modified drug release properties, low cost, and easy scale-up). Additionally, they are deemed as favorable candidates caused by their capability to enhance skin permeation, which is the main challenge in transcutaneous delivery. The aim of this review is to summarize from a critical point of view the most recent niosome-based nanoparticulate formulations for transdermal administration and their added value in pharmaceutical technology and engineering. The formulation protocols, the main excipients and Active Pharmaceutical Ingredients (APIs), and the main physicochemical and biological properties and applications of niosome-based transdermal drug delivery systems are discussed and analyzed. Taking into account their scale-up in the pharmaceutical industry, the critical quality attributes (CQAs), along with the most critical design and process parameters, are reviewed in depth, while existing limitations are also considered. Niosomes are candidate drug delivery platforms with added value in transdermal administration.</div></div>\",\"PeriodicalId\":36748,\"journal\":{\"name\":\"Current Opinion in Biomedical Engineering\",\"volume\":\"35 \",\"pages\":\"Article 100603\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468451125000285\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451125000285","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Recent advances in niosome-based transdermal drug delivery systems
Niosomes are promising drug delivery nanosystems for transdermal administration. They exhibit several advantages for drug delivery and targeting applications, (i.e. biocompatibility, increased physical stability, modified drug release properties, low cost, and easy scale-up). Additionally, they are deemed as favorable candidates caused by their capability to enhance skin permeation, which is the main challenge in transcutaneous delivery. The aim of this review is to summarize from a critical point of view the most recent niosome-based nanoparticulate formulations for transdermal administration and their added value in pharmaceutical technology and engineering. The formulation protocols, the main excipients and Active Pharmaceutical Ingredients (APIs), and the main physicochemical and biological properties and applications of niosome-based transdermal drug delivery systems are discussed and analyzed. Taking into account their scale-up in the pharmaceutical industry, the critical quality attributes (CQAs), along with the most critical design and process parameters, are reviewed in depth, while existing limitations are also considered. Niosomes are candidate drug delivery platforms with added value in transdermal administration.