{"title":"[Spatiotemporal Eolution and Prediction of Ecosystem Service Value in Taihang Mountains Based on MCCA Land Use Scenario Simulation].","authors":"Feng Hu, Yao Chen, Chang-Chun Zhang, Guo-Hao Hu","doi":"10.13227/j.hjkx.202311027","DOIUrl":"https://doi.org/10.13227/j.hjkx.202311027","url":null,"abstract":"<p><p>Ecosystem service value (ESV) is an important indicator related to regional ecological well-being, and understanding its evolution can provide references for regional ecological civilization construction and sustainable development. The Taihang Mountains, an important ecological security barrier in North China, were taken as an example. Based on land use data from 2000 to 2020, this study revealed the changes in land use and ecosystem service value in the Taihang Mountains and conducted multi-scenario simulations of ESV in 2035. Additionally, the land use transfer matrix, improved equivalent factor method, and mixed-cell cellular automata model were used. The results showed that: ① From 2000 to 2020, the main land use types in the Taihang Mountains were cropland, forest land, and grassland. The area of cropland and grassland significantly decreased, whereas the area of forest land and construction land remained stable. The scale of land use transfer was 2.06×10<sup>4</sup> km<sup>2</sup>, with a high intensity of transfer from cropland and grassland to other areas, mainly guided by ecological construction. ② The ecosystem service functions in the Taihang Mountains were mainly dominated by regulation services, and the overall ESV showed a stable upward trend, increasing by 1.51×10<sup>10</sup> RMB from 2000 to 2020. The spatial distribution of ESV was uneven, and the polarization phenomenon was evident, with high-value areas concentrated in the high-altitude areas in the northern and central-southern parts and low-value areas mostly located in the flat foothills and central plateaus on both sides. They were greatly influenced by human activities. ③ By 2035, compared with that in 2020, the ESV in the Taihang Mountains was projected to increase by 5.37 billion RMB in the natural growth scenario, 4.34 billion RMB in the urban development scenario, and 7.64 billion RMB in the ecological tourism scenario, mainly due to the conversion from cropland and grassland to forest land. The natural growth scenario showed a high intensity of spatial transformation of ESV, the urban development scenario experienced severe ESV loss in cropland, and the ecological tourism scenario showed a significant increase in ESV, which was an effective path for promoting green development in the Taihang Mountains. The research results can provide scientific references for the healthy management and sustainable development of the ecosystem in the Taihang Mountains.</p>","PeriodicalId":35937,"journal":{"name":"Huanjing Kexue/Environmental Science","volume":"45 10","pages":"5912-5923"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Construction Path of \"Zero Carbon\" Power Plant Based on the LEAP Model].","authors":"Tian Wang, Xiao-Xiu Lun","doi":"10.13227/j.hjkx.202311011","DOIUrl":"https://doi.org/10.13227/j.hjkx.202311011","url":null,"abstract":"<p><p>As the power industry is the primary carbon emission industry, the research on the construction path of \"zero-carbon\" power plants against the background of the \"dual-carbon\" goal must be strengthened. Considering a state-owned power generation enterprise as an example, based on the carbon emissions of the power plant in recent years, the LEAP model was constructed by combining its energy structure and geographical and climatic conditions and the baseline, energy structure adjustment, technological progress, and comprehensive scenarios were set up. The energy consumption demand under each scenario was analyzed and the future carbon emissions under each scenario were predicted. The results showed that in 2060, the total carbon emissions from the power generation sector under the technological progress and energy structure adjustment scenarios decrease by 54.55% and 75.97% compared with those in the baseline scenario, respectively, which demonstrated the large potential for carbon emission reduction from clean energy substitution and that the flexibility transformation of thermal power units and the upgrading and replacement of ultra-supercritical generating units could reduce coal consumption and decrease carbon emissions, whereas the development of CCUS technology was significant, and the construction of CCUS projects was a necessary condition for realizing carbon neutrality of power plants while retaining a certain scale of thermal power generation. Under a comprehensive scenario, \"zero carbon\" emissions from power plants could be realized around 2056. The results of the study provide ideas for the construction of \"zero carbon\" power plants.</p>","PeriodicalId":35937,"journal":{"name":"Huanjing Kexue/Environmental Science","volume":"45 10","pages":"5632-5640"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meng-Xia Yan, En-Feng Liu, Xiao-Yu Wang, Wen-Ke Chen, Guo-Zhan Li, Ming Ji, En-Lou Zhang
{"title":"[Pollution of Heavy Metals in Topsoil of Remote Mountainous Areas in Western Yunnan-Guizhou Plateau].","authors":"Meng-Xia Yan, En-Feng Liu, Xiao-Yu Wang, Wen-Ke Chen, Guo-Zhan Li, Ming Ji, En-Lou Zhang","doi":"10.13227/j.hjkx.202310101","DOIUrl":"https://doi.org/10.13227/j.hjkx.202310101","url":null,"abstract":"<p><p>Heavy metals from anthropogenic emissions have had a negative impact on the ecological environment in remote regions. A total of 69 topsoil samples were collected from 13 remote mountainous areas in the western Yunnan-Guizhou Plateau at altitudes of 2 563-4 037 m, and the concentrations of ten heavy metals in the samples were determined. Enrichment characteristics and pollution sources of heavy metals in topsoil were discussed by referencing the enrichment factor (EF), positive matrix factorization (PMF), and Pb isotopes. The results showed that the average concentrations of Al, Fe, Cu, V, and Zn in the topsoil were lower than the soil background values in Yunnan Province; the average concentrations of Ni and Pb were similar to the background values; and the average concentrations of Cd, Cr, and Hg were 1.8-3.6 times higher than the background values. The average EF values of Pb, Cr, and Ni were 3.8, 3.4, and 2.3, respectively, showing moderate enrichment according to the EF classification criteria; the average EF values of Cd and Hg were 15.2 and 10.0, reflecting significant enrichment; and the average EF values of the other metals ranged from 1.1 to 1.9, displaying none-weak enrichment. Combining the comparisons of heavy metal concentrations and ratios in topsoil and bedrock and the EF and PMF results, Al, Fe, V, Cr, Cu, Ni, and Zn in topsoil were considered primarily from detrital sources, and the spatial concentration variations of the metals should have been mainly regulated by the parent material. Cadmium, Hg, and Pb were obviously polluted by anthropogenic emissions, and the main sources were non-ferrous metal smelting and coal combustion. The areas with relatively high Cd, Hg, and Pb pollution were mainly distributed in the Jiaozi snow mountain, Bitahai watershed, Luoji Mountain, and Laojun Mountain areas. Anthropogenic emissions contributed 23.8% of the accumulation of heavy metals in the topsoil.</p>","PeriodicalId":35937,"journal":{"name":"Huanjing Kexue/Environmental Science","volume":"45 10","pages":"6185-6194"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Advances in the Separation and Removal of Microplastics in Water Treatment Processes].","authors":"Yi-Ran Chai, Hui-Jie Xu, Ke-Xuan Gao, Yu Yang, Li-An Hou","doi":"10.13227/j.hjkx.202309240","DOIUrl":"https://doi.org/10.13227/j.hjkx.202309240","url":null,"abstract":"<p><p>In this review, we comprehensively analyzed the distribution of microplastics (MPs) in major water ecosystems in China and the fate of MPs during the water treatment process. The removal efficiency of MPs with different colors, sizes, shapes, and materials was also discussed. The results showed that the abundance of microplastics in the aquatic environment was geographically variable and closely related to human activities. Fibrous and transparent (white) microplastics were the most common features in China's water ecosystems and water treatment plants, with polypropylene (PP), polyethylene (PE), and polystyrene (PS) being the most common polymer types of microplastics. The removal efficiency of MPs varied from different treatment processes significantly. Pre-treatment and primary treatment in wastewater treatment plants (WWTPs) contributed the most to the removal. In the secondary treatment, the sedimentation tank showed more efficiency than the biological treatment processes. Tertiary treatment processes demonstrated remarkable effectiveness in achieving terminal control of MPs, especially membrane technologies. On the contrary, aeration and hydrodynamic effects may have increased the abundance of MPs in WWTPs. In drinking water treatment plants (DWTPs), coagulation-sedimentation processes were found to be the most effective in removing MPs, followed by filtration and disinfection processes. Further, both pre-treatment and post-treatment steps also made significant contributions to MPs removal.</p>","PeriodicalId":35937,"journal":{"name":"Huanjing Kexue/Environmental Science","volume":"45 10","pages":"6112-6128"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Changes in Phytoplankton Community Structure in Qingcaosha Reservoir Based on Time Series Analysis].","authors":"Xin-Lan Wang, Yin Guo, Feng Li, Wen-Ting Wang, Li-Ya Sheng, Li-Jing Chen","doi":"10.13227/j.hjkx.202310038","DOIUrl":"https://doi.org/10.13227/j.hjkx.202310038","url":null,"abstract":"<p><p>Qingcaosha Reservoir is one among the important reservoirs and drinking water sources in Shanghai. Samples were collected from the reservoir every month from 2014 to 2021 to analyze phytoplankton community structure and water environmental factors to provide a reasonable reference for urban reservoir operation management, water resource protection, and development and utilization. The results showed that 561 species of phytoplankton were identified from eight phyla in 8a, mainly diatomata, chlorophyta, and cyanophyta, accounting for 34.94%, 34.58%, and 17.65% of the total species, respectively. A total of 26 dominant species were present in four phyla, and cyanobacteria accounted for 50%. Diatoms and green algae were the dominant species, cyanobacteria was the absolute dominant species, and other phyla accounted for a low proportion in the community structure. The Qingcaosha reservoir had the tendency of transforming into a cyanobacteria-type reservoir. The major dominant genera of chlorophyta were <i>Scenedesmus</i>, <i>Ankistrodesmusc</i>, and <i>Chlorellaceae</i>. The dominant genera of the phylum cyanobacteria were <i>Merismopediaceae</i>, <i>Microcystaceae</i>, <i>Aphanocapsa</i>, and <i>Pseudanabaenaceae</i>. The major dominant genera of the diatoms were <i>Cyclotella</i>, <i>Melosira</i>, and <i>Aulacoseira</i>. The dominant genus of xanthophyta was <i>Tribonemataceae</i>. Phytoplankton abundance ranged from 8.391×10<sup>5</sup> to 2.115×10<sup>7</sup> cells·L<sup>-1</sup>, with an average of 6.345×10<sup>6</sup> cells·L<sup>-1</sup>. The biomass of phytoplankton varied from 0.113 to 11.903 mg·L<sup>-1</sup>, with an average of 1.538 mg·L<sup>-1</sup>. The maximum abundance occurred in summer, and the maximum biomass occurred in spring. In spatial distribution, the maximum biomass and abundance appeared in the reservoir. Redundancy analysis (RDA) of phytoplankton community structure and water environmental factors showed that water temperature (WT), dissolved oxygen (DO), and nutrient salts (TN, TP) were important environmental factors affecting phytoplankton community structure, and significant changes occurred in 2014-2017 and 2018-2021. From 2018 to 2021, cyanobacteria disappeared and cyanobacteria dominated the reservoir and even changed to cyanobacteria-type reservoirs. From 2016 to 2021, half of the dominant species were cyanobacteria, and the cyanobacteria abundance accounted for the highest proportion during this period. The reasons for the extinction of xanthophyta were speculated to be the increase in phosphorus concentration and water temperature, and the reasons for the dominant position of cyanophyta, to be the rise of water level, water temperature, and alkaline water. Reservoirs use filter-feeding fish to control algal overgrowth; however, filter-feeding fish do not filter all algae and not all of their filter-feeding algae is easily digestible. In this study, it was observed that the size of digestible algae biomass i","PeriodicalId":35937,"journal":{"name":"Huanjing Kexue/Environmental Science","volume":"45 10","pages":"5800-5810"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jing-Jie Li, Tao Yang, Ming-Guo Wang, Sheng Lian, Yong-Gao Lü, Jing-Yi Cai
{"title":"[Characteristics and Influencing Factors of Soil and Crops Selenium Content in Eastern Sanjiang Plain].","authors":"Jing-Jie Li, Tao Yang, Ming-Guo Wang, Sheng Lian, Yong-Gao Lü, Jing-Yi Cai","doi":"10.13227/j.hjkx.202310047","DOIUrl":"https://doi.org/10.13227/j.hjkx.202310047","url":null,"abstract":"<p><p>Too identify seleniut(Se) content characteristics and influencing factors in soil and crops of Shengli Farm in eastern Sanjiang Plain, statistical analysis and correlation analysis were comprehensively used to analyze the test results of 83 groups of surface soil samples and 34 groups of crop seed samples. The results showed that the Se content in the study area ranged from 0.12 to 0.95 mg·kg<sup>-1</sup>, with an average value of 0.37 mg·kg<sup>-1</sup>, and the enrichment degree was stronger with an enrichment coefficient of 3.18. Oxidizable Se was the main Se fraction, accounting for 81%, 79%, 79%, and 80% of T-Se in marsh soil, white soil, dry land, and paddy field, respectively. The content of reducible Se was the lowest, accounting for less than 5%. The effects of soil physicochemical indexes on Se content differences mainly showed that Se was negatively correlated with pH and total potassium (TK) and significantly positively correlated with cation exchange capacity (CEC), soil organic matter (SOM), humus (HS), total nitrogen (TN), and total phosphorus (TP). The average content of Se in different land use types was as follows: dryland > irrigated land > grassland > forest land, as the dryland soil with low pH and high SOM was more likely to enrich Se. Among different soil types, the average Se content in gleysols was the highest at 0.45 mg·kg<sup>-1</sup>, which was higher than the average value in the study area. The average content of Se in the quaternary alluvial layer was the highest at 0.43 mg·kg<sup>-1</sup>, and its parent material mainly consisted of lacustrine sediments rich in organic matter, which was one of the important factors in forming Se rich soil. The Se content in crops and root soil showed a negative correlation. Se in low pH or high SOM soil was not easily absorbed by crops, and its Se content was also controlled by the form of soil Se, which was positively correlated with available Se content and negatively correlated with oxidizable Se content. Therefore, it is suggested to reduce the amount of artificial fertilizer used in cultivated land as a means of increasing Se bioavailability to change the current situation of crop Se levels in this area.</p>","PeriodicalId":35937,"journal":{"name":"Huanjing Kexue/Environmental Science","volume":"45 10","pages":"6195-6206"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Effects of Climate Changes and Crop Phenological Responses on Soil Organic Carbon of Cultivated Land in Fujian Province].","authors":"Yi-Fan Li, Ting Wu, Yuan Yao, Zhi-Qiang Li, Jin-Quan Shen, Huai-Kai Weng, Li-Ming Zhang, Shi-He Xing","doi":"10.13227/j.hjkx.202309159","DOIUrl":"https://doi.org/10.13227/j.hjkx.202309159","url":null,"abstract":"<p><p>Research on the mechanism of how climate change affects cultivated soil organic carbon is the basis for the management of cultivated land quality in the context of climate change. Crop phenological responses to climate change have an important effect on cultivated soil organic carbon as well. However, previous research primarily focused on the independent effects of climate change or crop phenological responses on the changes in soil organic carbon, and few studies have analyzed the changes in cultivated soil organic carbon under the combined influence of both factors or quantified their contribution rates to the changes in cultivated soil organic carbon. Based on topsoil samples in 2008 and 2021, annual pre-season and mid-season climate data from 2008 to 2021, and the phenological parameters extracted from the enhanced vegetation index (EVI) time series from 2007 to 2022, a soil organic carbon predictive model was constructed using the random forest algorithm. The total change in soil organic carbon from 2008 to 2021, the change in soil organic carbon under climate change alone, and the change in soil organic carbon under the synergistic influence of climate change and crop phenological responses were simulated. Furthermore, the contributions of climate change and crop phenological responses to the changes in cultivated soil organic carbon were distinguished and quantified. Moreover, the dominant influencing factors of soil organic carbon changes and their spatial distributions were identified and analyzed. The results were as follows: ① Under the synergistic influence of climate change and crop phenological responses, a decrease was observed in soil organic carbon in 74.15% of the cultivated land area in Fujian Province during the years 2008-2021, with an average decrease of 2.20 g·kg<sup>-1</sup>. Additionally, there was an increase in soil organic carbon in 25.85% of the cultivated area, with an average increase of 1.48 g·kg<sup>-1</sup>. ②The average contribution rates of pre-season climate, crop phenological responses to climate change, mid-season climate, and phenological changes resulting from cultivars shifts or other adjustments of agricultural measures to soil organic carbon changes were 34.08%, 28.56%, 22.75%, and 14.61%, respectively. Overall, climate change had a greater impact on the changes in cultivated soil organic carbon in Fujian Province than the crop phenological response to climate change. ③ The regions where climate change and phenological response jointly acted as dominant influencing factors held the largest area, accounting for 47.06% of the total cultivated land area in Fujian Province, and the regions where climate change was the dominant influencing factor alone held the second-largest area, accounting for 28.64% of the total cultivated land area. ④ Higher contribution rates of pre-season climate factors and phenological changes resulting from cultivar shifts or other adjustments of agricultural measures tended","PeriodicalId":35937,"journal":{"name":"Huanjing Kexue/Environmental Science","volume":"45 10","pages":"6012-6027"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Land Cover Simulation and Carbon Storage Assessment in Daqing City based on FLUS-InVEST Model].","authors":"Xue Li, Wen Li, Yu Gao","doi":"10.13227/j.hjkx.202312007","DOIUrl":"https://doi.org/10.13227/j.hjkx.202312007","url":null,"abstract":"<p><p>Considering Daqing City as the research area, the impact of land cover change on carbon storage in the future was discussed, and the hot spots of carbon sequestration capacity were identified. The future land use simulation (FLUS) model was used to simulate the land cover pattern of a natural succession scenario, ecological protection scenario, urban development scenario, and comprehensive development scenario in 2030, and the integrated valuation of ecosystem services and trade-offs (InVEST) model was combined to estimate carbon storage in 2010, 2020, and 2030. Finally, the hot spot analysis tool was used to identify the cold hot spots of carbon sequestration capacity. The results showed the following: ① From 2010 to 2020, the area of cultivated land, water, and artificial surface increased, whereas the area of other land cover types decreased, and the total carbon storage decreased by 8.6×10<sup>5</sup> t. ② The land cover change of the natural succession scenario and urban development scenario in 2030 was similar to that of 2010-2020, with carbon storage decreasing by 1.16×10<sup>6</sup> t and 1.20×10<sup>6</sup> t, respectively. The carbon storage of the comprehensive development scenario decreased by 1.00×10<sup>6</sup> t compared with that in 2020, and carbon storage of the ecological protection scenario was 5.677 7×10<sup>8</sup> t, which increased by 2.53×10<sup>6</sup> t compared with that in 2020. ③ The conversion of grassland and wetland to cultivated land was the main cause of carbon storage loss, and the main contributor of carbon storage in the ecological protection scenarios was wetland. ④ The hot spots of carbon sequestration capacity were mainly located in the wetland area, and the cold spots were mainly distributed in the central part of Daqing City. The carbon sequestration capacity of cultivated land was not significant. According to the research results, to realize the urban transformation of Daqing City, we should insist on returning farmland to forest and grass, increase the intensity of returning moisture, improve the utilization rate of urban land, and increase green infrastructure in the main urban area.</p>","PeriodicalId":35937,"journal":{"name":"Huanjing Kexue/Environmental Science","volume":"45 10","pages":"5983-5993"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Spatio-temporal Situation, Regional Differences, and Dynamic Evolution of the Distribution of Ecological Compensation in the Yellow River Basin].","authors":"Zheng-Nan Zhao, Shao-Feng Ru","doi":"10.13227/j.hjkx.202312039","DOIUrl":"https://doi.org/10.13227/j.hjkx.202312039","url":null,"abstract":"<p><p>In the context of regional coordinated development and modernization of ecological and environmental governance capacity, the spatial collaborative governance of transboundary river basins has received extensive attention, but the ecological compensation of river basins is faced with the intertwined relationship of rights and responsibilities, and the horizontal ecological compensation mechanism has not yet been perfected. Based on the emergy ecological footprint model, the ecological compensation amount of 90 cities in the Yellow River Basin in 2007-2021 was measured, and the spatiotemporal pattern, regional differences, and dynamic evolution characteristics of distribution were explored by combining exploratory spatial data analysis, Dagum Gini coefficient, kernel density estimation, and spatial Markov chain analysis. The results showed that: ① The spatiotemporal pattern of ecological compensation in the Yellow River Basin was different, the ecological compensation amount decreased slightly in the fluctuation and increased from the northwest to southeast gradient in general, and the high-value areas were concentrated in the areas with a superior ecological background or developed economy, and some upstream cities had given up many development opportunities to maintain the ecological security of the Yellow River Basin, however, failed to obtain reasonable ecological compensation. ② A significant positive spatial agglomeration phenomenon was observed in ecological compensation and the overall spatial distribution trend was \"cold in the north and hot in the south.\" The number of low-payment areas and low-compensation areas gradually decreased, showing a gradually shrinking agglomeration layout from the periphery to the center, whereas the number of high-payment areas and high-compensation areas continued to increase and formed a spatial evolution characteristic of the coexistence of scattered distribution and group distribution. ③ The overall regional differences in ecological compensation expanded. The over-variation density was the main source of the overall differences, and the focus on alleviating the intra-regional and inter-regional differences was located in the downstream areas. ④ A slight multi-level differentiation phenomenon was present in ecological compensation. The influence of different neighbors on the horizontal transfer of ecological compensation was quite different. This spatial spillover effect easily formed a \"space club convergence\" phenomenon within a certain geographical spatial range, but with the expansion of time, the probability of maintaining the original level of ecological compensation in each city decreased, and mobility gradually increased. Therefore, increasing the investment in ecological compensation in different fields, strengthening the coordinated development between regions, and giving full play to the spatial spillover effect are important ways to solve the current spatial imbalance of ecological comp","PeriodicalId":35937,"journal":{"name":"Huanjing Kexue/Environmental Science","volume":"45 10","pages":"5853-5867"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509658","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Temporal and Spatial Variations of Soil Organic Carbon and the Influencing Factors in Shaanxi Province in Recent 30 Years].","authors":"Xiao-Lin Feng, Yu-Yang Yan, Xin-Ran Zhang, Chu-Tian Zhang, Zeng-Chao Geng, Fei-Nan Hu, Chen-Yang Xu","doi":"10.13227/j.hjkx.202311169","DOIUrl":"https://doi.org/10.13227/j.hjkx.202311169","url":null,"abstract":"<p><p>Soil organic carbon (SOC) variation is a significant indicator for the soil quality dynamic and global carbon cycle. Therefore, it is necessary to study the regional temporal and spatial distribution of SOC pool and the influencing factors. In this study, a total of 540 soil data and environmental variables were collected from Shaanxi Province during a 30-year period from 1985 to 2015, and univariate analysis of variance and path analysis were used to explore the temporal and spatial distribution characteristics of SOC content and the influencing factors of SOC change. The results showed that the SOC contents of Shaanxi Province in both 1985 and 2015 were the highest in central Shaanxi, followed by those in southern Shaanxi, and they were significantly higher than those in northern Shaanxi. From 1985 to 2015, the increase in SOC in southern Shaanxi was the highest (21.28%), and that in central Shaanxi was 15.33%. The content of SOC in northern Shaanxi was decreased by 10.23%, caused by significant decrements in the bottom horizons of 60-80 cm and 80-100 cm. Compared with that in 1985, the increases in SOC content in the 0-100 cm soil profile (with every 20 cm as a horizon) ranged from 3.21% to 29.39% in 2015. The increase in SOC content of skeletal soils was largest, followed by that of alluvial soils. Correlation analysis and path analysis showed that SOC content was positively correlated with altitude, average annual precipitation, normalized vegetation index, and total nitrogen content and was in significant negative correlation with curvature, bulk density, and pH. Total nitrogen content was the main controlling factor affecting SOC content. The results of the study can provide reference for future carbon management measures in the region.</p>","PeriodicalId":35937,"journal":{"name":"Huanjing Kexue/Environmental Science","volume":"45 10","pages":"5994-6001"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509660","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}