{"title":"[Construction of Cross-basin Ecological Security Patterns Based on Carbon Sinks and Landscape Connectivity].","authors":"Meng-Wei Han, Shuai-Pu Zhang, Qin-Xue Xu, Jun-Feng Dai, Guang-Ling Huang","doi":"10.13227/j.hjkx.202310035","DOIUrl":"https://doi.org/10.13227/j.hjkx.202310035","url":null,"abstract":"<p><p>Artificial water system creation and land use changes have great effects on ecosystems. The construction of cross-basin ecological security patterns based on carbon sinks and landscape connectivity plays a key role in regional ecological environment protection. The linkage area between the Xiang River and the Li River was selected as the research object. Based on the land use data from 2000 to 2020, this study examined the ecological security network of the Xiang-Li connected region using the InVEST model combined with morphological spatial pattern analysis (MSPA) and evaluated the temporal and spatial evolution of carbon storage and ecological security patterns. The results showed that: ① From 2000 to 2020, the land cover types of the Xiang-Li linkage area were mainly forest land and arable land. The changes of land use types were characterized by decreases in arable land, forest land, and grassland and by increases in watersheds and construction land. ② The carbon storage in the Xiang-Li linkage area was characterized by a blocky distribution, and the high and medium areas were dominant. The carbon stock increased slowly from 2000 to 2010 and decreased dramatically from 2010 to 2020, with a cumulative decrease of 18.32×10<sup>3</sup> t due to the influence of land use changes. ③ The area of ecological sources (five in total) decreased firstly and then increased, whereas the length of ecological corridors (ten in total) increased firstly and then decreased in the Xiang-Li linkage area. Overall, in the process of urbanization, the distribution of the high ecological resistance value in the Xiang-Li linkage area gradually shifted to the northeast with an expansion, whereas the barycenter of the ecological safety pattern shifted to the southwest. Determining the dynamic distribution and stability of ecological sources by coupling carbon storage patches and landscape patterns can provide a new way to construct ecological security patterns in cross-basin ecosystems.</p>","PeriodicalId":35937,"journal":{"name":"Huanjing Kexue/Environmental Science","volume":"45 10","pages":"5844-5852"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Spatial-temporal Change and Driving Force of Carbon Storage in Three-River-Source National Park Based on PLUS-InVEST-Geodector Model].","authors":"Tian-Chao Jia, Xi-Wu Hu","doi":"10.13227/j.hjkx.202310046","DOIUrl":"https://doi.org/10.13227/j.hjkx.202310046","url":null,"abstract":"<p><p>Exploring the spatial-temporal changes, driving forces, and future development tendency of the carbon sequestration service function of the Three-River-Source National Park ecosystem has great significance for regional ecological protection and sustainable development. Historical land-use data of Three-River-Source National Park from 1990 to 2020 were selected at five-year intervals, and based on the PLUS-InVEST-Geodector model, the spatial-temporal changes of historical carbon storage were analyzed, and the driving forces of spatial-temporal variation were explored combined with multiple factors. The carbon storage of Three-River-Source National Park in 2030 was predicted under the scenarios of natural development and ecological protection. The results showed that: ① The carbon storage of Three-River-Source National Park showed a fluctuating characteristic of increase-decrease-increase-decrease from 1990 to 2020, the carbon storage was increased by 41.85×10<sup>6</sup> t overall, and the grassland took the largest contribution. ② The spatial distribution characteristics of carbon storage in Three-River-Source National Park had little change between 1990 to 2020, and the evolution of the spatial distribution was relatively stable. The contribution ratio of the Yangtze River source park, Lancang River source park, and Yellow River source park was 7∶1∶2, which was roughly equivalent to the park area. ③ The major driving factors of the spatial-temporal variation of carbon storage in Three-River-Source National Park from 1990 to 2020 were: FVC, soil type, and annual precipitation. The interactive detection of each driving factor showed dual-factor enhancement and nonlinear enhancement. ④ The carbon storage of Three-River-Source National Park was predicted to decrease by 4.87% and 3.98% from 2020 to 2030 under the scenarios of natural development and ecological protection, respectively, and the carbon storage reduction under the ecological protection scenario had a significant inhibitory effect. The findings can provide data support for national spatial planning of Three-River-Source National Park and the enhancement of terrestrial ecosystem carbon storage.</p>","PeriodicalId":35937,"journal":{"name":"Huanjing Kexue/Environmental Science","volume":"45 10","pages":"5931-5942"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Spatial Differentiation Characteristics of Soil Organic Carbon and Its Influencing Factors in Cultivated Land in Major Grain-producing Areas: A Case Study of Hebei Province].","authors":"En-Yi Xie, Dong-Heng Yao, Yu-Bo Liao, Wen-Guang Chen, Jing Zhao, Zhen-Ting Zhao, Wei-Quan Zhao, Ying Zhang, Xiang-Bin Kong","doi":"10.13227/j.hjkx.202309140","DOIUrl":"https://doi.org/10.13227/j.hjkx.202309140","url":null,"abstract":"<p><p>Assessing the spatial differentiation characteristics of soil organic carbon (SOC) in cultivated land in major grain-producing areas is important for regional cultivated land quality management and national food security. We investigated 519 soil profiles of cultivated land in Hebei Province (0-120 cm equally divided into six layers), and obtained 2961 samples. We used geostatistical methods and spatial exploratory analysis to reveal the spatial distribution pattern of SOC in cultivated land in Hebei Province and the impacts of climate, topography, geomorphology, soil properties, and anthropogenic use on the spatial distribution of SOC in cultivated land soils. The results showed that: ① The SOC content of cultivated land in Hebei Province showed a decreasing trend with the increase in soil depth, with the highest mean value of <i>ω</i>(SOC) of 9.57 g·kg<sup>-1</sup> in A1 (0-20 cm) and the lowest mean value of 4.17 g·kg<sup>-1</sup> in A6 (100-120 cm), and the coefficient of variation showed an increasing trend with the increase in soil depth. ② The SOC at different depths of cultivated land in Hebei Province had similar horizontal spatial distribution characteristics, and in general, showed a trend of being high in the northwest and low in the southeast. ③ Soil texture and topography were the main influencing factors for the spatial variation of SOC in cultivated land in Hebei Province, showing that the more clay-rich the soil texture, the greater the SOC content, and the higher the elevation, the greater the SOC content. Soil pH also influenced the SOC content of the profile. The SOC content of the surface layer is mainly affected by anthropogenic use, whereas the bottom layer is affected by the cumulative temperature.</p>","PeriodicalId":35937,"journal":{"name":"Huanjing Kexue/Environmental Science","volume":"45 10","pages":"6002-6011"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Characteristics of Spatial and Temporal Changes in Carbon Stocks in the Middle and Upper Reaches of the Huaihe River Basin and Future Multi-scenario Simulation Prediction].","authors":"Xi-Meng Yang, Bao-Wei Qian, Guang-Xing Ji, Wei-Qiang Chen, Jun-Chang Huang, Yu-Long Guo, Yi-Nan Chen","doi":"10.13227/j.hjkx.202311034","DOIUrl":"https://doi.org/10.13227/j.hjkx.202311034","url":null,"abstract":"<p><p>The Huaihe River Basin is located in the north-south climate transition zone of China. The change of carbon storage in this area is of great significance for predicting the future ecological protection, mitigating climate change, and maintaining sustainable development of the Huaihe River Basin. The middle and upper reaches of Huaihe River Basin (above Bengbu station) were taken as the research area. Based on the land use data from 1980 to 2020, the PLUS model was used to simulate and predict the land use types in the study area from 2030 to 2100 under the scenarios of SSP1-2.6, SSP2-4.5, SSP5-8.5, and the continuation of land use status. The carbon module in the InVEST model was used to simulate and predict the carbon storage from 1980 to 2020 and the carbon storage from 2030 to 2100 under various scenarios, and the spatial and temporal changes of carbon storage in the middle and upper reaches of the Huaihe River Basin were compared and analyzed. The results showed that: ① From 1980 to 2020, the basin showed a decrease in both cultivated land and grassland,and the area of forest,water, construction, and unused land all increased, among which the area of cultivated land continued to decrease, with a total decrease of 4 699 km<sup>2</sup> in 40 a. Construction land continued to increase, with a total increase of 4 592 km<sup>2</sup> in 40 a. ② The carbon storage in the basin showed a downward trend, with a total reduction of 1.05×10<sup>7</sup> t from 1980 to 2020. ③ In the four scenarios, the area of each land type had different degrees of change, and that of the SSP1-2.6 scenario was relatively small out of the four scenarios. ④ Compared with the carbon storage in 2020, the carbon storage in the SSP1-2.6 scenario increased by 8.7×10<sup>4</sup> t, the carbon storage in the SSP2-4.5 scenario decreased by 1.42×10<sup>7</sup> t, the carbon storage in the SSP5-8.5 scenario decreased by 1.34×10<sup>7</sup> t, and the carbon storage in the current continuation scenario decreased by 1.22×10<sup>7</sup> t. The study can provide a scientific basis for land use structure management and ecological protection in the middle and upper reaches of the Huaihe River Basin (above Bengbu station) in the future.</p>","PeriodicalId":35937,"journal":{"name":"Huanjing Kexue/Environmental Science","volume":"45 10","pages":"5970-5982"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Effects of Different Nitrogen Application Measures on N<sub>2</sub>O Emissions in Wheat-maize Rotation System].","authors":"Lian-Feng Cai, Xue-Xia Wang, Jia-Chen Wang, Bing Cao, Dan Wei, Li-Na Liang","doi":"10.13227/j.hjkx.202311180","DOIUrl":"https://doi.org/10.13227/j.hjkx.202311180","url":null,"abstract":"<p><p>To investigate the response of N<sub>2</sub>O emissions from farmland soil to different nitrogen application measures and the factors affecting it in the wheat and jade rotation system in North China, we analyzed the results of the one-time application of fertilizer in the following six treatments: without fertilization (CK), conventional nitrogen application (urea, one instance of follow-up fertilization, U1), optimized nitrogen application (20% nitrogen reduction, one instance of follow-up fertilization, U2), one-time fertilization of controlled-release doped fertilizers (50% urea + controlled-release urea 50%, nitrogen reduction 20%, SRU1), controlled-release fertilizer one-time fertilization (nitrogen reduction 20%, SRU2), and inhibitor-type controlled-release fertilizer one-time fertilization (nitrogen reduction 20%, ISRU), and the differences in N<sub>2</sub>O emission fluxes and soil physicochemical properties were determined. The results showed that soil N<sub>2</sub>O emission fluxes were dynamic during the wheat and jade crop rotation, and the N<sub>2</sub>O emission peaks of the CK, U1, and U2 treatments appeared in the corn season at 4-7d of basal fertilizer and 6-10d of fertilizer, and out of the wheat season its emission peaks appeared in the basal fertilizer at 4-8 d and 6-9 d of fertilizer. The emission peaks of SRU1, SRU2, and ISRU appeared in the basal fertilizer at 10-21 d, 12-20 d, and 12-20 d of fertilizer, respectively, in the corn season and the wheat season. At 21 d and 12-20 d, the application of controlled-release fertilizer significantly reduced the peak and frequency of N<sub>2</sub>O emission. Compared with those in U1, the N<sub>2</sub>O emission fluxes of the U2, SRU1, SRU2, and ISRU treatments were significantly reduced by 8.5%, 20.0%, 33.8%, and 43.6%, respectively, and the N<sub>2</sub>O emission fluxes were higher in the corn season than in the wheat season, which accounted for 58.1%-65.1% of the whole crop rotation cycle. Yield was reduced by 5.9% and 1.9% for the U2 and SRU1 treatments and increased by 1.7% and 7.0% for the SRU2 and ISRU treatments, respectively, compared to that in U1. In the maize season, the ISRU yield increased by 14.6%, the environmental benefit was $581, and the net economic benefit increased by up to 18.6% compared to that in U1, whereas the wheat season showed a decrease in yield and net economic benefit, which resulted in a one-time application of the inhibitor controlled-release fertilizers being more suitable for the maize season. Correlation analysis of N<sub>2</sub>O emission fluxes with the physicochemical indices of soil properties revealed that N<sub>2</sub>O was correlated with moisture, ammonium N, nitrate N, and microbial carbon and nitrate N and nitrogen. N<sub>2</sub>O and moisture, ammonium N, nitrate N, and microbial amount of carbon and nitrogen were significantly positively correlated. Thus, the one-time application of inhibitor-type controlled-release fertilizer","PeriodicalId":35937,"journal":{"name":"Huanjing Kexue/Environmental Science","volume":"45 10","pages":"6148-6156"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sen Zhang, Ying Cao, Cun-Fu Gao, Tian Meng, Qiang Li
{"title":"[Pollution Characteristics, Risk Assessment, and Source Analysis of Heavy Metals in Soil from a Typical Abandoned Antimony Smelting Factory].","authors":"Sen Zhang, Ying Cao, Cun-Fu Gao, Tian Meng, Qiang Li","doi":"10.13227/j.hjkx.202310173","DOIUrl":"https://doi.org/10.13227/j.hjkx.202310173","url":null,"abstract":"<p><p>Considering the surface soil (0-20 cm) from a typical abandoned antimony smelting factory area in Dachang Town, Qinglong County, Guizhou Province, as a case study, a total of 14 soil samples were systematically collected from both within and outside the smelting factory area. The analysis focused on the pollution status, distribution characteristics, and potential ecological risks of heavy metals such as Sb, As, Cd, Cr, Pb, Cu, Zn, Ni, and V in the soil. Additionally, an evaluation and analysis of pollution sources were conducted. The results showed that the mean concentrations of heavy metals including <i>ω</i>(Sb), <i>ω</i>(As), <i>ω</i>(Cd), <i>ω</i>(Cr), <i>ω</i>(Pb), <i>ω</i>(Cu), <i>ω</i>(Zn), <i>ω</i>(Ni), and <i>ω</i>(V) in the surface soil of the abandoned antimony smelting factory ranged from 4.58 to 15 049.33 mg·kg<sup>-1</sup>. With the exception of Cr and Ni, all values exceeded the background values of soils in Guizhou province. The single factor pollution indices of Sb and As were 83.61 and 7.01, respectively, indicating severe contamination. In contrast, Pb fell within the non-polluted to slightly polluted range. The comprehensive potential ecological risk of soil heavy metals was characterized by severe potential ecological risk levels for Sb, As, and Cd, while the remaining heavy metals fell within a range of moderate to substantial potential ecological risk levels. The assessment of the geoaccumulation index revealed that the soil in the study area was primarily contaminated by Sb and As, predominantly exhibiting contamination levels ranging from moderate to severe. The results from the RAC method suggested that Sb was the dominant focus for remediation in this abandoned smelting factory. The two primary pollutants, Sb and As, exhibited elevated levels in leachate toxicity, acid-soluble fraction, available fraction, gastric phase, and intestinal phase in terms of bioavailable content, indicating a certain potential hazard. Further, correlation analysis indicated a certain correlation between the total amount of heavy metals and leachate toxicity, available fraction, acid-soluble fraction, reducible fraction, oxidizable fraction, gastric phase extractable fraction, and intestinal phase extractable fraction. The APCS-MLR model indicated that the sources of Sb, As, Zn, Cu, and Cd were primarily industrial, while the sources of Cr and V were mainly natural, and Pb originated mainly from mixed sources.</p>","PeriodicalId":35937,"journal":{"name":"Huanjing Kexue/Environmental Science","volume":"45 10","pages":"6171-6184"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min An, Ya-Qian Wei, Wei-Jun He, Jin Huang, Xue Fang, Meng-Fei Song, Bei Wang
{"title":"[Impact of Climate Change and Human Activities on the Ecological Sensitivity of the Yangtze River Economic Belt].","authors":"Min An, Ya-Qian Wei, Wei-Jun He, Jin Huang, Xue Fang, Meng-Fei Song, Bei Wang","doi":"10.13227/j.hjkx.202311071","DOIUrl":"https://doi.org/10.13227/j.hjkx.202311071","url":null,"abstract":"<p><p>The increasing climate change and human activities exert their influence on the ecological sensitivity of the region individually and interactively. Therefore, a clear understanding of the impact of climate change and human activities on ecological sensitivity will enhance the resilience of the regional ecological environment and the level of sustainable development. This study took the Yangtze River Economic Belt, the first demonstration zone of China's ecological civilization construction, as the research object. Based on the meteorological, remote sensing, and statistical data of 130 cities in the whole region from 2001 to 2021, an index system of climate change, human activities, and ecological sensitivity was constructed. Response surface methodology (RSM) was used to explore the effects of climate and anthropogenic single factors and interactions on the ecological sensitivity in each region. The results showed that: ① The ecological sensitivity value of the belt fluctuated and rose in time, rising by 2.2% from 2001 to 2021. In terms of space, the overall spatial distribution was \"high in the north and low in the south.\" In 2021, the proportion of severely and extremely sensitive cities in the Yangtze River Economic Belt reached nearly 50%. ② For a single factor, the distribution of the effect of the same factor had certain characteristics: The areas where the single factors of economic development, rainfall, and temperature had a positive impact on the ecological sensitivity were concentrated in the areas with higher or faster economic development, along and south of the Yangtze River. For the interaction factors, the effect of 78.6% of the factors on the ecological sensitivity was negative interaction, and the change of one factor level would change the direction of the effect of the other factor on the regional sensitivity. ③ The comprehensive ecological management area of the Yangtze River Economic Belt was divided based on the ecological sensitivity and climate sensitivity. The governance areas that needed priority improvement were clustered within the three urban agglomerations and their northern adjacent areas, which meant that the ecological sensitivity and climate sensitivity of a city had spillover effects. This study is expected to provide inspiration for the economic zone and even the national and global efforts in the field of regional ecological governance.</p>","PeriodicalId":35937,"journal":{"name":"Huanjing Kexue/Environmental Science","volume":"45 10","pages":"5833-5843"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Changes in Physical Fractions within Soil Aggregates Under Nitrogen Reduction and Film Mulching Measures in Dryland Wheat Field].","authors":"Jun-Yu Xie, Yu-Yan Bai, Han-Bing Cao, Feng-Mao Zhang, Xin-Ge Shi, Yi-Fan Liu, Ting-Liang Li","doi":"10.13227/j.hjkx.202311136","DOIUrl":"https://doi.org/10.13227/j.hjkx.202311136","url":null,"abstract":"<p><p>We studied the changes in various physical fractions within aggregates in the arid plateau of southern Shanxi Province, which has great significance for synergistically improving soil fertility and crop productivity in this region. Bulk soil samples were collected from 0-20 cm layers during a 7-year long-term experiment in Hongtong County, Shanxi Province. Wheat grain yields, SOC concentrations, proportions, and OC contents within soil aggregates were analyzed. OC contents included: unprotected coarse particulate organic carbon within macroaggregate (M-cPOC) and fine particulate organic carbon within macroaggregate (M-fPOC), physically protected intra-aggregate particulate organic carbon within macroaggregate (M-iPOC), chemically/biochemically protected mineral organic carbon within macroaggregate (M-MOC), unprotected fine particulate organic carbon within microaggregate (m-fPOC), physically protected intra-aggregate particulate organic carbon within microaggregate (m-iPOC), and chemically/biochemically protected mineral organic carbon within microaggregate (m-MOC). The treatments were ① farmer fertilization (FP), ② nitrogen reduction monitoring and control fertilization (MF), ③ nitrogen reduction monitoring and control fertilization plus ridge film and furrow sowing (RF), and ④ nitrogen reduction monitoring and control fertilization plus flat film hole sowing (RF). The results showed that compared with that in the FP treatment, MF reduced SOC concentration while maintaining wheat grain yield, RF and FH synergistically improved soil fertility and crop yield, especially for the FH with SOC concentration, and wheat grain yield increased by 8.44% and 48.86%, respectively. MF significantly reduced the content of M-cPOC, RF significantly increased the content of M-iPOC, and FH significantly increased the contents of M-fPOC, M-iPOC, M-MOC, and m-iPOC by 64.00%, 98.39%, 6.16%, and 17.48%, respectively. In addition, combined with redundancy analysis, we found that the M-iPOC fraction played a major role in increasing SOC concentration and wheat grain yield, with a contribution rate of 61.5%. Therefore, the contribution of macroaggregates to soil fertility and crop productivity was higher than that of microaggregates in the arid plateau area of southern Shanxi, and flat film hole sowing could increase the content of M-iPOC, thereby synergistically increasing SOC sequestration and wheat grain yield, which could promote this cultivation technology in the region and even in the country's arid agricultural areas.</p>","PeriodicalId":35937,"journal":{"name":"Huanjing Kexue/Environmental Science","volume":"45 10","pages":"6028-6037"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"[Chemical Spatiotemporal Characteristics and Environmental Driving Factors of Groundwater in Hetao Irrigation Area].","authors":"Dan-Dan Du, Yan-Ying Bai, De-Liang Yuan","doi":"10.13227/j.hjkx.202310197","DOIUrl":"https://doi.org/10.13227/j.hjkx.202310197","url":null,"abstract":"<p><p>To explore the chemical characteristics and environmental factors of groundwater in the Hetao Irrigation Area of Inner Mongolia, five irrigation fields, including UulanBuh, Jiefangzha, Yongji, Yichang, and Wulat, were selected as the research area. From 72 groundwater observation wells, a total of 216 groundwater samples were collected throughout three typical periods: the end of freeze-thaw (March), the middle of irrigation (July), and the end of autumn watering (November). Comprehensive methods were utilized, such as statistical analysis, Piper three-line diagram, Gibbs diagram, ion ratio, and principal component analysis, to explore the changes in the groundwater chemical environment and the environmental driving factors of groundwater component formation. The groundwater drinking suitability was evaluated using the water quality index (WQI), and the irrigation suitability was analyzed using the USSL and Wilcox plots. The results indicated that the groundwater in the research areas was generally saline, and the total anion and cation concentrations in each period in ascending order were as follows: late freeze-thaw stage, late autumn irrigation stage, and mid-irrigation stage, with Na<sup>+</sup> and Cl<sup>-</sup> being the major contributing ions. The chemical type of groundwater was dominated by Cl-Na, followed by Cl·SO<sub>4</sub>-Ca·Mg and a coexistence with SO<sub>4</sub>-Ca·Mg, HCO<sub>3</sub>·Cl-Na, HCO<sub>3</sub>-Na, and HCO<sub>3</sub>-Ca·Mg. Based on WQI values, the shallow groundwater in Hetao Irrigation District was mainly classified as Class IV and Class V, and the quality was poor in general. According to the USSL diagram and Wilcox diagram, the comprehensive evaluation results showed that the salinity and sodium concentration of shallow groundwater in the irrigation area were generally high. A total of 80.6% of the water samples during the late freeze-thaw period, 76.1% during the mid-irrigation period, and 77.6% during the late autumn irrigation period lacked irrigation suitability. Two major controlling factors of groundwater chemical characteristics were present in the study area, namely, evaporation and rock weathering, and Na<sup>+</sup> and Cl<sup>-</sup> mainly came from the dissolution and cation exchange of salt rocks. Agricultural irrigation and drought were the chief driving factors of groundwater chemical evolution in the Hetao Irrigation Area. The study provides technical support for optimizing agricultural management measures and a theoretical reference for rational utilization of groundwater resources in the Yellow River irrigation area of Inner Mongolia.</p>","PeriodicalId":35937,"journal":{"name":"Huanjing Kexue/Environmental Science","volume":"45 10","pages":"5777-5789"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ying-Jie Li, Li Han, Cheng-Hui Wang, Yang Bai, Tao Jiang
{"title":"[Source Profiles of VOCs for Different Types of Industrial Boilers in Sichuan, China].","authors":"Ying-Jie Li, Li Han, Cheng-Hui Wang, Yang Bai, Tao Jiang","doi":"10.13227/j.hjkx.202310244","DOIUrl":"https://doi.org/10.13227/j.hjkx.202310244","url":null,"abstract":"<p><p>Seven different types of industrial boilers in Sichuan Province were selected to determine the VOC emission components and the source profiles of VOCs containing 115 components were established using Teflon sampling and GC-MS/FID analysis. The ozone formation potential (OFP) and emission factors of VOCs from different types of industrial boilers were analyzed. The results showed that the VOC components emitted from different types of industrial boilers were different. Oxygenated volatile organic compounds (OVOCs) and halogenated hydrocarbons were the major components of biomass boilers, with a total contribution rate of more than 60%. The primary VOC emission species included dichloromethane, ethylene, acetone, acetaldehyde, acetylene, and toluene. Halogenated hydrocarbons (50.7%) were the chief emission components of coal-fired boilers, followed by aromatic hydrocarbons and OVOCs. Dichloromethane, ethylene, acetaldehyde, ethyl acetate, and benzene hydrocarbon were the major VOC emission species. The emission of alkanes (59.7%) in natural gas boilers was prominent, particularly ethane and isopentane. The OFP values of VOC emissions from coal-fired, biomass, and natural gas industrial boilers were 6.1, 28.7, and 4.7 mg·m<sup>-3</sup>, respectively. Alkenes were the primary OFP contributors (35.1%-59.5%) in different types of industrial boilers. OVOCs (32.8%) in biomass boilers and aromatic hydrocarbons (43.0%) in coal-fired boilers also contributed significantly to OFP. The VOC emission factors of coal-fired, biomass, and natural gas industrial boilers in Sichuan Province were (17.3 ± 10.7) g·t<sup>-1</sup>, (90.6 ± 42.1) g·t<sup>-1</sup>, and 0.10 g·m<sup>-3</sup>, respectively. The VOC emission level of biomass boilers was higher than that of coal-fired boilers and VOC emission control could not be ignored.</p>","PeriodicalId":35937,"journal":{"name":"Huanjing Kexue/Environmental Science","volume":"45 10","pages":"5687-5694"},"PeriodicalIF":0.0,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142509634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}