{"title":"[Water Quality Analysis and Prediction for the Middle Route of South-to-North Water Diversion Project Based on EDM-LSTM].","authors":"Bing Bai, Fei Dong, Wen-Qi Peng, Xiao-Bo Liu","doi":"10.13227/j.hjkx.202407244","DOIUrl":null,"url":null,"abstract":"<p><p>To deeply analyze the causal relationships among various water quality indicators in the Middle Route of South-to-North Water Diversion Project and achieve high-precision predictions, a method combining empirical dynamic modeling (EDM) and deep learning is proposed. Empirical dynamic modeling is utilized to conduct causal analysis among water quality indicators. Based on this, a dataset is constructed to train long short-term memory (LSTM) neural networks for water quality prediction. The prediction accuracy and computational time of different LSTM structures are compared. The results showed that: ① The water quality of the Middle Route of South-to-North Water Diversion was stable, with no significant abrupt changes along the route. ② There was a bidirectional causal relationship between total nitrogen and dissolved oxygen, as well as pH, in the Middle Route of South-to-North Water Diversion Project. ③ The neural network trained based on causal analysis results could achieve high-precision water quality predictions for the Middle Route of South-to-North Water Diversion Project, with the Nash efficiency coefficient of the predictions generally exceeding 0.85. This method can deeply analyze the causal relationships among variables and achieve high-precision predictions, providing scientific support for water quality management and subsequent analysis and prediction of water ecological factors in the Middle Route of South-to-North Water Diversion Project.</p>","PeriodicalId":35937,"journal":{"name":"环境科学","volume":"46 8","pages":"5103-5111"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13227/j.hjkx.202407244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
To deeply analyze the causal relationships among various water quality indicators in the Middle Route of South-to-North Water Diversion Project and achieve high-precision predictions, a method combining empirical dynamic modeling (EDM) and deep learning is proposed. Empirical dynamic modeling is utilized to conduct causal analysis among water quality indicators. Based on this, a dataset is constructed to train long short-term memory (LSTM) neural networks for water quality prediction. The prediction accuracy and computational time of different LSTM structures are compared. The results showed that: ① The water quality of the Middle Route of South-to-North Water Diversion was stable, with no significant abrupt changes along the route. ② There was a bidirectional causal relationship between total nitrogen and dissolved oxygen, as well as pH, in the Middle Route of South-to-North Water Diversion Project. ③ The neural network trained based on causal analysis results could achieve high-precision water quality predictions for the Middle Route of South-to-North Water Diversion Project, with the Nash efficiency coefficient of the predictions generally exceeding 0.85. This method can deeply analyze the causal relationships among variables and achieve high-precision predictions, providing scientific support for water quality management and subsequent analysis and prediction of water ecological factors in the Middle Route of South-to-North Water Diversion Project.