{"title":"基于逆积累灰色断点模型的中国碳排放强度预测[j]。","authors":"Hui-Ping Wang, Zhun Zhang","doi":"10.13227/j.hjkx.202407216","DOIUrl":null,"url":null,"abstract":"<p><p>Given the escalating challenges posed by global climate change, as the world's largest carbon emitter, China is facing a huge challenge in achieving its \"dual carbon\" goals. Therefore, reasonable prediction of China's carbon emission intensity is crucial for formulating effective emission reduction strategies. Considering the external shocks faced by the economic system, the time breakpoint is introduced into the traditional grey prediction model. The model is optimized from two aspects: accumulation method and background value, and a new grey breakpoint model with inverse accumulation is constructed. Based on the calculation of China's carbon emissions, the carbon emission intensity from 2023 to 2030 was predicted. The following conclusions were drawn: ① By adding time breakpoints, the new model achieved accurate prediction of the future trend of the system under external shocks, further reflecting the principle of information priority in the modeling process. ② Under the external impact of the COVID-19, the growth rate of China's GDP further slowed down, and the carbon emissions showed different characteristics in the four regions. The carbon emissions in the northeast began to decline gradually, while the carbon emissions in the eastern and western regions accelerated. ③ From 2023 to 2030, China's carbon emission intensity will considerably decrease. Compared with that in 2020, the carbon emission intensity is expected to decrease by 13.2% in 2025 and by 22.6% in 2030, with the highest decline in the northeast and the lowest in the east. However, under current conditions, China still finds it difficult to fully achieve its 2025 and 2030 emission reduction targets, with the eastern and western regions facing enormous pressure to reduce carbon emissions.</p>","PeriodicalId":35937,"journal":{"name":"环境科学","volume":"46 8","pages":"4765-4777"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Prediction of China's Carbon Emission Intensity Based on a Grey Breakpoint Model with Inverse Accumulation].\",\"authors\":\"Hui-Ping Wang, Zhun Zhang\",\"doi\":\"10.13227/j.hjkx.202407216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Given the escalating challenges posed by global climate change, as the world's largest carbon emitter, China is facing a huge challenge in achieving its \\\"dual carbon\\\" goals. Therefore, reasonable prediction of China's carbon emission intensity is crucial for formulating effective emission reduction strategies. Considering the external shocks faced by the economic system, the time breakpoint is introduced into the traditional grey prediction model. The model is optimized from two aspects: accumulation method and background value, and a new grey breakpoint model with inverse accumulation is constructed. Based on the calculation of China's carbon emissions, the carbon emission intensity from 2023 to 2030 was predicted. The following conclusions were drawn: ① By adding time breakpoints, the new model achieved accurate prediction of the future trend of the system under external shocks, further reflecting the principle of information priority in the modeling process. ② Under the external impact of the COVID-19, the growth rate of China's GDP further slowed down, and the carbon emissions showed different characteristics in the four regions. The carbon emissions in the northeast began to decline gradually, while the carbon emissions in the eastern and western regions accelerated. ③ From 2023 to 2030, China's carbon emission intensity will considerably decrease. Compared with that in 2020, the carbon emission intensity is expected to decrease by 13.2% in 2025 and by 22.6% in 2030, with the highest decline in the northeast and the lowest in the east. However, under current conditions, China still finds it difficult to fully achieve its 2025 and 2030 emission reduction targets, with the eastern and western regions facing enormous pressure to reduce carbon emissions.</p>\",\"PeriodicalId\":35937,\"journal\":{\"name\":\"环境科学\",\"volume\":\"46 8\",\"pages\":\"4765-4777\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.13227/j.hjkx.202407216\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13227/j.hjkx.202407216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
[Prediction of China's Carbon Emission Intensity Based on a Grey Breakpoint Model with Inverse Accumulation].
Given the escalating challenges posed by global climate change, as the world's largest carbon emitter, China is facing a huge challenge in achieving its "dual carbon" goals. Therefore, reasonable prediction of China's carbon emission intensity is crucial for formulating effective emission reduction strategies. Considering the external shocks faced by the economic system, the time breakpoint is introduced into the traditional grey prediction model. The model is optimized from two aspects: accumulation method and background value, and a new grey breakpoint model with inverse accumulation is constructed. Based on the calculation of China's carbon emissions, the carbon emission intensity from 2023 to 2030 was predicted. The following conclusions were drawn: ① By adding time breakpoints, the new model achieved accurate prediction of the future trend of the system under external shocks, further reflecting the principle of information priority in the modeling process. ② Under the external impact of the COVID-19, the growth rate of China's GDP further slowed down, and the carbon emissions showed different characteristics in the four regions. The carbon emissions in the northeast began to decline gradually, while the carbon emissions in the eastern and western regions accelerated. ③ From 2023 to 2030, China's carbon emission intensity will considerably decrease. Compared with that in 2020, the carbon emission intensity is expected to decrease by 13.2% in 2025 and by 22.6% in 2030, with the highest decline in the northeast and the lowest in the east. However, under current conditions, China still finds it difficult to fully achieve its 2025 and 2030 emission reduction targets, with the eastern and western regions facing enormous pressure to reduce carbon emissions.