2021 IEEE 71st Electronic Components and Technology Conference (ECTC)最新文献

筛选
英文 中文
Ultrasonic Thick Wire Bonding Process Simulation and Validation for Silicon Carbide Power Devices 碳化硅功率器件超声粗线键合工艺仿真与验证
2021 IEEE 71st Electronic Components and Technology Conference (ECTC) Pub Date : 2021-06-01 DOI: 10.1109/ECTC32696.2021.00282
Pan Liu, Liangtao Li, Z. Zeng, Guoqi Zhang, Pengfei Liu, Jon Qingchun Zhang, Jing Zhang
{"title":"Ultrasonic Thick Wire Bonding Process Simulation and Validation for Silicon Carbide Power Devices","authors":"Pan Liu, Liangtao Li, Z. Zeng, Guoqi Zhang, Pengfei Liu, Jon Qingchun Zhang, Jing Zhang","doi":"10.1109/ECTC32696.2021.00282","DOIUrl":"https://doi.org/10.1109/ECTC32696.2021.00282","url":null,"abstract":"Ultrasonic wire bonding is one of the critical challenges for power semiconductor manufacturing process, especially for silicon carbide (SiC) power devices. Packaging-related strain on the dies is one of the limiting factors for SiC devices scaling towards mass-production. Furthermore, due to the high current demand for SiC power device packaging, thick bond wires are often needed, which brings major challenges for the ultrasonic wire bonding process. Thus, computational simulation methods are under development to assist the wire bonding process. This paper presents a simulation method that can quickly narrow the process window for thick bond wires on SiC power devices beforehand. A process model was created to adapt process parameters of bonding force and power. This model aims to simulate the bond deformation for a discretized bonding area. Wire deformation and equivalent plastic strain were then examined and compared. The model was further validated through experiments. Experimental validation of the wire bonding model reveals a suitable deformation of bond wires, which helps to improve thick wire bonding reliability for power electronics packaging.","PeriodicalId":351817,"journal":{"name":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115016641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wireless Photonic Sensors with Flex Fan-Out Packaged Devices and Enhanced Power Telemetry 无线光子传感器与柔性扇出封装设备和增强电力遥测
2021 IEEE 71st Electronic Components and Technology Conference (ECTC) Pub Date : 2021-06-01 DOI: 10.1109/ECTC32696.2021.00246
Sepehr Soroushiani, Huy Nguyen, Carlos Riera Cercado, Abdulhameed Abdal, Christopher Bolig, S. Y. B. Sayeed, S. Bhardwaj, Wei-Chiang Lin, P. Raj
{"title":"Wireless Photonic Sensors with Flex Fan-Out Packaged Devices and Enhanced Power Telemetry","authors":"Sepehr Soroushiani, Huy Nguyen, Carlos Riera Cercado, Abdulhameed Abdal, Christopher Bolig, S. Y. B. Sayeed, S. Bhardwaj, Wei-Chiang Lin, P. Raj","doi":"10.1109/ECTC32696.2021.00246","DOIUrl":"https://doi.org/10.1109/ECTC32696.2021.00246","url":null,"abstract":"The objective of this paper is to demonstrate flex-embedded and surface-assembled photonic devices, inductive telemetry, and passive integration to form next-generation miniaturized biophotonic sensors. A hybrid combination of embedding and surface-assembled devices on flex is pursued to reduce the lateral and thickness dimensions of biophotonic systems. Embedding of premanufactured discrete passive devices is demonstrated by inserting in cavities, followed by printed fan-out connections to form the bridge connects between devices and other system components. Initial prototypes showed functional response to color shifts and reliability under bending loads on tissue phantoms. Measurements also confirmed responses to muscle activity as seen through changes in the backscattered light intensity during fist-closure with human subject hands. Initial bending test and reliability after water immersion indicate the stability of the chosen material systems towards flexible and wearable applications. This system concept can eventually be integrated with other system components such as RF transceivers for data telemetry, leading to completely autonomous wireless photosensors for wearable and implantable systems.","PeriodicalId":351817,"journal":{"name":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123280683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ECTC 2021 Technical Program Committee ECTC 2021技术计划委员会
2021 IEEE 71st Electronic Components and Technology Conference (ECTC) Pub Date : 2021-06-01 DOI: 10.1109/ectc32696.2021.00008
{"title":"ECTC 2021 Technical Program Committee","authors":"","doi":"10.1109/ectc32696.2021.00008","DOIUrl":"https://doi.org/10.1109/ectc32696.2021.00008","url":null,"abstract":"","PeriodicalId":351817,"journal":{"name":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121753209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Investigation on Microfluidic Electroless Deposition for Uniform Copper Pillar Microbumps Interconnection 均匀铜柱微凸点互连微流控化学沉积数值研究
2021 IEEE 71st Electronic Components and Technology Conference (ECTC) Pub Date : 2021-06-01 DOI: 10.1109/ECTC32696.2021.00074
Yonglin Zhang, Haibin Chen, H. Fan, Jinglei Yang, Jingshen Wu
{"title":"Numerical Investigation on Microfluidic Electroless Deposition for Uniform Copper Pillar Microbumps Interconnection","authors":"Yonglin Zhang, Haibin Chen, H. Fan, Jinglei Yang, Jingshen Wu","doi":"10.1109/ECTC32696.2021.00074","DOIUrl":"https://doi.org/10.1109/ECTC32696.2021.00074","url":null,"abstract":"The conventional thermo-compression bonding method in either solder-based or solder-less approaches for the 3D chip integration lead to reliability issues including warpage, delamination and die crack due to high temperature and pressure. To eliminate the issues, an approach of microfluidic electroless interconnection featured with low temperature and pressure has been reported. In this work, the multi-physical field model was firstly developed to understand the deposition mechanism of the microfluidic electroless interconnection method based on a simulation framework considering electrochemistry, fluid flow and mass transfer, and experimental validation was conducted. The results of the numerical work manifest good agreement with the experimental data, and the dominant limitation of the technology is insufficient mass transfer in the microchannel introducing deposition thickness non-uniformity reaching 90%. To eliminate the non-uniformity, the effects of flow velocity and reverse flow are investigated demonstrating remarkable enhancement. The theoretical simulation model shows good feasibility and accuracy providing insight and understanding in the process and mechanism of the technology.","PeriodicalId":351817,"journal":{"name":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125299236","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study and Application of Nano Copper Sintering Technology in Power Electronics Packaging 纳米铜烧结技术在电力电子封装中的研究与应用
2021 IEEE 71st Electronic Components and Technology Conference (ECTC) Pub Date : 2021-06-01 DOI: 10.1109/ECTC32696.2021.00304
Xu Liu, Quan Zhou, Xu Zhao, S. Koh, H. Ye, Guoqi Zhang
{"title":"Study and Application of Nano Copper Sintering Technology in Power Electronics Packaging","authors":"Xu Liu, Quan Zhou, Xu Zhao, S. Koh, H. Ye, Guoqi Zhang","doi":"10.1109/ECTC32696.2021.00304","DOIUrl":"https://doi.org/10.1109/ECTC32696.2021.00304","url":null,"abstract":"Nano-metal sintering has been proven to be a promising die attachment technology for power electronics packaging in the high-end application. Compared with nano silver technology, it is believed that copper-based sintering technology has better cost and performance superiority, and thus has more potential to be utilized in the industry in the future. However, most of the current developed nano copper sintering material and technology shows bad performance with high sintering energy input. In this study, a novel nano-copper based paste has been developed with excellent process ability (sinterable below 280°C for 10 min with low pressure assisted) and good material property (over 40 MPa shear strength), which turns out to be suitable for the state-of-the-art packaging process. Then the material was applied into a SiC power module packaging scenario which shows comparable performance as silver sintering. The whole process only consumed less than 0.5h for each batch, which indicates that the copper sintering technology has great potential for the packaging application in high power situation.","PeriodicalId":351817,"journal":{"name":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126160598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reliability analysis of 3D CSP MEMS and IC under thermal cycle-impact coupled multi-physics loads 热循环冲击耦合多物理场载荷下三维CSP MEMS和IC的可靠性分析
2021 IEEE 71st Electronic Components and Technology Conference (ECTC) Pub Date : 2021-06-01 DOI: 10.1109/ECTC32696.2021.00221
Shuye Zhang, Jianhao Xu, Shang Zhang, P. He, Mingjia Sun, Jianqun Yang, Xingji Li, K. Paik
{"title":"Reliability analysis of 3D CSP MEMS and IC under thermal cycle-impact coupled multi-physics loads","authors":"Shuye Zhang, Jianhao Xu, Shang Zhang, P. He, Mingjia Sun, Jianqun Yang, Xingji Li, K. Paik","doi":"10.1109/ECTC32696.2021.00221","DOIUrl":"https://doi.org/10.1109/ECTC32696.2021.00221","url":null,"abstract":"In this paper, reliability analysis of 3D CSP MEMS and IC under thermal cycle-impact coupled multi-physics loads was investigated. COMSOL Multiphysics, a finite element software, was used to analyze the mechanical behavior of our device under a −55°C/125°C thermal cycling and 1500G@1ms with half-sine pulse impact coupled load. MEMS chip was bonded on a silicon interposer by solder balls. An application specific integrated circuit (ASIC) for the signal processing was placed on the interposer beneath the MEMS. Combining the effects of thermal stress and impact loads, we hope to find out the failure modes of interconnect structures including solder joints and whole device. The deformation and stress distribution of the overall device will be carried out for layout optimization of interconnect structures.","PeriodicalId":351817,"journal":{"name":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129314249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct Bonded Heterogeneous Integration (DBHi) Si Bridge 直接键合异质集成(DBHi)硅桥
2021 IEEE 71st Electronic Components and Technology Conference (ECTC) Pub Date : 2021-06-01 DOI: 10.1109/ECTC32696.2021.00034
K. Sikka, R. Bonam, Yang Liu, P. Andry, Dishit P. Parekh, Aakrati Jain, M. Bergendahl, R. Divakaruni, Maryse Cournoyer, P. Gagnon, Catherine Dufort, I. de Sousa, Hongqing Zhang, Ed Cropp, T. Wassick, H. Mori, S. Kohara
{"title":"Direct Bonded Heterogeneous Integration (DBHi) Si Bridge","authors":"K. Sikka, R. Bonam, Yang Liu, P. Andry, Dishit P. Parekh, Aakrati Jain, M. Bergendahl, R. Divakaruni, Maryse Cournoyer, P. Gagnon, Catherine Dufort, I. de Sousa, Hongqing Zhang, Ed Cropp, T. Wassick, H. Mori, S. Kohara","doi":"10.1109/ECTC32696.2021.00034","DOIUrl":"https://doi.org/10.1109/ECTC32696.2021.00034","url":null,"abstract":"We introduce a new packaging technology termed as Direct Bonded Heterogeneous Integration (DBHi) where a Si-bridge is directly bonded to and in between processor chips using Cu pillars, allowing high-bandwidth low-latency low-power communication between the chips. The DBHi package structure, test vehicle design, and bond and assembly details are first described. The test vehicle package consists of chips with standard interconnect pitch where they join to a laminate chip-carrier and fine-pitch pads in the region where the chips joins to a bridge. The bridge has Cu pillars correspondingly mating to the pads on the chips. The bond and assembly sequence starts with first joining the silicon chips and bridge using a thermocompression bonding process followed by a mass reflow join of the chips to the laminate. The assembly is then underfilled and capped using specialized techniques. Mechanical modeling was extensively used to simulate the DBHi structure and assembly process to allow material selection and reliability prediction. The mechanical models were calibrated using warpage measurements. The stress/strain reliability metrics of the DBHi package are compared to a non-bridge package of the same dimensions. Results show that the main focus should be directed towards ensuring a robust assembly process as the standard reliability stress/strain metrics of the DBHi package are very similar to a non-bridge package. Thermal measurements using chip heaters and temperature sensors were conducted to calibrate a numerical thermal model of the DBHi package. The thermal model was exercised to show the relation between the allowable chip and bridge power densities for the particular package size and cooling conditions. DBHi test packages were created using the best-known assembly process and then measured for continuity performance. A variety of inter- and intra-bridge daisy chain nets were incorporated into the test vehicle for continuity measurements. Post-assembly continuity measurements demonstrated a robust assembly process for multiple rounds of assembly. Reliability performance was demonstrated using standard JEDEC tests of thermal cycling, aging, and temperature/humidity.","PeriodicalId":351817,"journal":{"name":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121793033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Heterogeneous Integration with Embedded Fine Interconnect 嵌入式精细互连的异构集成
2021 IEEE 71st Electronic Components and Technology Conference (ECTC) Pub Date : 2021-06-01 DOI: 10.1109/ECTC32696.2021.00348
C. T. Chong, Lim Teck Guan, D. Ho, Han Yong, C. Choong, Sharon Lim Pei Siang, S. Bhattacharya
{"title":"Heterogeneous Integration with Embedded Fine Interconnect","authors":"C. T. Chong, Lim Teck Guan, D. Ho, Han Yong, C. Choong, Sharon Lim Pei Siang, S. Bhattacharya","doi":"10.1109/ECTC32696.2021.00348","DOIUrl":"https://doi.org/10.1109/ECTC32696.2021.00348","url":null,"abstract":"High density heterogeneous integration of ASIC and HBM2 through the use of embedded fine pitch interconnect (EFI) in face-to-face configuration using RDL 1st fan-out wafer packaging platform is demonstrated. The EFI configuration, thermal design consideration and heat dissipation for high power application, mechanical structural modeling for warpage control, wafer fabrication and assembly process integration and reliability testing results will be discussed.","PeriodicalId":351817,"journal":{"name":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122437692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Challenges and key learnings in enabling Low Temperature Solder (LTS) technology at packaging components supply base 在封装元件供应基地启用低温焊料(LTS)技术的挑战和关键经验
2021 IEEE 71st Electronic Components and Technology Conference (ECTC) Pub Date : 2021-06-01 DOI: 10.1109/ECTC32696.2021.00112
Anna Prakash, K. Byrd, R. Sidhu, S. Elhalawaty, Nevil M. Wu, Hiroshi Okumura, Srinivas Erukula, Jason Lim
{"title":"Challenges and key learnings in enabling Low Temperature Solder (LTS) technology at packaging components supply base","authors":"Anna Prakash, K. Byrd, R. Sidhu, S. Elhalawaty, Nevil M. Wu, Hiroshi Okumura, Srinivas Erukula, Jason Lim","doi":"10.1109/ECTC32696.2021.00112","DOIUrl":"https://doi.org/10.1109/ECTC32696.2021.00112","url":null,"abstract":"There has been a great interest in the use of low temperature soldering (LTS) for surface mount technology (SMT) in the past five years. Low temperature solder (LTS) technology improves the package warpage by reducing thermo-mechanical stress during SMT reflow. Several other benefits with LTS include environmental benefits, decreased carbon emissions, and lower electricity consumption. In this study, LTS technology has been evaluated on several electronic components such as, Integrated circuit (IC), memory, ASIC, and passives. Using several LTS formulations, Solder Joint Reliability (SJR) properties were characterized EOL as well as after reliability testing at components suppliers. Several different package types (i.e. QFN, LGA, CSP, WLCSP etc.), and surface finishes were used in this study. For some of the IC components, different types of packages were evaluated: land grid array (LGA) and quad flat no leads (QFN). Different paste formulations having (35–58 wt.% Bi content) were used in these evaluations and SAC305 was the POR/control leg used. Temperature cycle and other reliability data showed promising results with comparable data for both LTS and SAC legs. The goal in this paper is to document some of the challenges in components supply chain enabling and key learnings on the factors that modulate LTS solder joint reliability for various components during SMT process.","PeriodicalId":351817,"journal":{"name":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126487633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Data-Driven Remaining Useful Life Prediction of QFN Packages on Board Level with On-Chip Stress Sensors 基于片上应力传感器的QFN封装板级剩余使用寿命预测
2021 IEEE 71st Electronic Components and Technology Conference (ECTC) Pub Date : 2021-06-01 DOI: 10.1109/ECTC32696.2021.00150
Daniel Riegel, P. Gromala, B. Han, S. Rzepka
{"title":"Data-Driven Remaining Useful Life Prediction of QFN Packages on Board Level with On-Chip Stress Sensors","authors":"Daniel Riegel, P. Gromala, B. Han, S. Rzepka","doi":"10.1109/ECTC32696.2021.00150","DOIUrl":"https://doi.org/10.1109/ECTC32696.2021.00150","url":null,"abstract":"Miniaturization of components and higher operating loads lead to reduced lifetimes. Prognostics and Health Management (PHM) enables predictive maintenance of components whose lifetime is shorter than that of the system they are part of. The key to PHM lies in sensor data that correlates with component degradation. In this study, run-to-failure data sets have been generated using in-situ measurements of on-chip stress sensors. Physical failure analysis has provided the link between the data and remaining useful life.","PeriodicalId":351817,"journal":{"name":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121491459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信