Data-Driven Remaining Useful Life Prediction of QFN Packages on Board Level with On-Chip Stress Sensors

Daniel Riegel, P. Gromala, B. Han, S. Rzepka
{"title":"Data-Driven Remaining Useful Life Prediction of QFN Packages on Board Level with On-Chip Stress Sensors","authors":"Daniel Riegel, P. Gromala, B. Han, S. Rzepka","doi":"10.1109/ECTC32696.2021.00150","DOIUrl":null,"url":null,"abstract":"Miniaturization of components and higher operating loads lead to reduced lifetimes. Prognostics and Health Management (PHM) enables predictive maintenance of components whose lifetime is shorter than that of the system they are part of. The key to PHM lies in sensor data that correlates with component degradation. In this study, run-to-failure data sets have been generated using in-situ measurements of on-chip stress sensors. Physical failure analysis has provided the link between the data and remaining useful life.","PeriodicalId":351817,"journal":{"name":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 71st Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC32696.2021.00150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Miniaturization of components and higher operating loads lead to reduced lifetimes. Prognostics and Health Management (PHM) enables predictive maintenance of components whose lifetime is shorter than that of the system they are part of. The key to PHM lies in sensor data that correlates with component degradation. In this study, run-to-failure data sets have been generated using in-situ measurements of on-chip stress sensors. Physical failure analysis has provided the link between the data and remaining useful life.
基于片上应力传感器的QFN封装板级剩余使用寿命预测
组件的小型化和更高的工作负载导致使用寿命缩短。预测和健康管理(PHM)支持对寿命短于其所属系统寿命的组件进行预测性维护。PHM的关键在于与部件退化相关的传感器数据。在这项研究中,使用片上应力传感器的原位测量生成了运行到故障的数据集。物理故障分析提供了数据和剩余使用寿命之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信