Neurobiology of LanguagePub Date : 2024-06-03eCollection Date: 2024-01-01DOI: 10.1162/nol_a_00139
Sara D Beach, Ding-Lan Tang, Swathi Kiran, Caroline A Niziolek
{"title":"Pars Opercularis Underlies Efferent Predictions and Successful Auditory Feedback Processing in Speech: Evidence From Left-Hemisphere Stroke.","authors":"Sara D Beach, Ding-Lan Tang, Swathi Kiran, Caroline A Niziolek","doi":"10.1162/nol_a_00139","DOIUrl":"10.1162/nol_a_00139","url":null,"abstract":"<p><p>Hearing one's own speech allows for acoustic self-monitoring in real time. Left-hemisphere motor planning regions are thought to give rise to efferent predictions that can be compared to true feedback in sensory cortices, resulting in neural suppression commensurate with the degree of overlap between predicted and actual sensations. Sensory prediction errors thus serve as a possible mechanism of detection of deviant speech sounds, which can then feed back into corrective action, allowing for online control of speech acoustics. The goal of this study was to assess the integrity of this detection-correction circuit in persons with aphasia (PWA) whose left-hemisphere lesions may limit their ability to control variability in speech output. We recorded magnetoencephalography (MEG) while 15 PWA and age-matched controls spoke monosyllabic words and listened to playback of their utterances. From this, we measured speaking-induced suppression of the M100 neural response and related it to lesion profiles and speech behavior. Both speaking-induced suppression and cortical sensitivity to deviance were preserved at the group level in PWA. PWA with more spared tissue in pars opercularis had greater left-hemisphere neural suppression and greater behavioral correction of acoustically deviant pronunciations, whereas sparing of superior temporal gyrus was not related to neural suppression or acoustic behavior. In turn, PWA who made greater corrections had fewer overt speech errors in the MEG task. Thus, the motor planning regions that generate the efferent prediction are integral to performing corrections when that prediction is violated.</p>","PeriodicalId":34845,"journal":{"name":"Neurobiology of Language","volume":"5 2","pages":"454-483"},"PeriodicalIF":3.6,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11192514/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141443466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neurobiology of LanguagePub Date : 2024-04-01eCollection Date: 2024-01-01DOI: 10.1162/nol_a_00137
Eghbal A Hosseini, Martin Schrimpf, Yian Zhang, Samuel Bowman, Noga Zaslavsky, Evelina Fedorenko
{"title":"Artificial Neural Network Language Models Predict Human Brain Responses to Language Even After a Developmentally Realistic Amount of Training.","authors":"Eghbal A Hosseini, Martin Schrimpf, Yian Zhang, Samuel Bowman, Noga Zaslavsky, Evelina Fedorenko","doi":"10.1162/nol_a_00137","DOIUrl":"https://doi.org/10.1162/nol_a_00137","url":null,"abstract":"<p><p>Artificial neural networks have emerged as computationally plausible models of human language processing. A major criticism of these models is that the amount of training data they receive far exceeds that of humans during language learning. Here, we use two complementary approaches to ask how the models' ability to capture human fMRI responses to sentences is affected by the amount of training data. First, we evaluate GPT-2 models trained on 1 million, 10 million, 100 million, or 1 billion words against an fMRI benchmark. We consider the 100-million-word model to be developmentally plausible in terms of the amount of training data given that this amount is similar to what children are estimated to be exposed to during the first 10 years of life. Second, we test the performance of a GPT-2 model trained on a 9-billion-token dataset to reach state-of-the-art next-word prediction performance on the human benchmark at different stages during training. Across both approaches, we find that (i) the models trained on a developmentally plausible amount of data already achieve near-maximal performance in capturing fMRI responses to sentences. Further, (ii) lower perplexity-a measure of next-word prediction performance-is associated with stronger alignment with human data, suggesting that models that have received enough training to achieve sufficiently high next-word prediction performance also acquire representations of sentences that are predictive of human fMRI responses. In tandem, these findings establish that although <i>some</i> training is necessary for the models' predictive ability, a developmentally realistic amount of training (∼100 million words) may suffice.</p>","PeriodicalId":34845,"journal":{"name":"Neurobiology of Language","volume":"5 1","pages":"43-63"},"PeriodicalIF":3.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11025646/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140859279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neurobiology of LanguagePub Date : 2024-04-01eCollection Date: 2024-01-01DOI: 10.1162/nol_a_00134
Alessandro Lopopolo, Milena Rabovsky
{"title":"Tracking Lexical and Semantic Prediction Error Underlying the N400 Using Artificial Neural Network Models of Sentence Processing.","authors":"Alessandro Lopopolo, Milena Rabovsky","doi":"10.1162/nol_a_00134","DOIUrl":"https://doi.org/10.1162/nol_a_00134","url":null,"abstract":"<p><p>Recent research has shown that the internal dynamics of an artificial neural network model of sentence comprehension displayed a similar pattern to the amplitude of the N400 in several conditions known to modulate this event-related potential. These results led Rabovsky et al. (2018) to suggest that the N400 might reflect change in an implicit predictive representation of meaning corresponding to semantic prediction error. This explanation stands as an alternative to the hypothesis that the N400 reflects lexical prediction error as estimated by word surprisal (Frank et al., 2015). In the present study, we directly model the amplitude of the N400 elicited during naturalistic sentence processing by using as predictor the update of the distributed representation of sentence meaning generated by a sentence gestalt model (McClelland et al., 1989) trained on a large-scale text corpus. This enables a quantitative prediction of N400 amplitudes based on a cognitively motivated model, as well as quantitative comparison of this model to alternative models of the N400. Specifically, we compare the update measure from the sentence gestalt model to surprisal estimated by a comparable language model trained on next-word prediction. Our results suggest that both sentence gestalt update and surprisal predict aspects of N400 amplitudes. Thus, we argue that N400 amplitudes might reflect two distinct but probably closely related sub-processes that contribute to the processing of a sentence.</p>","PeriodicalId":34845,"journal":{"name":"Neurobiology of Language","volume":"5 1","pages":"136-166"},"PeriodicalIF":3.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11025650/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140868474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana Zappa, Deirdre Bolger, Jean-Marie Pergandi, Raphael Fargier, Daniel Mestre, Cheryl Frenck-Mestre
{"title":"The neural correlates of embodied L2 learning: Does embodied L2 verb\u0000 learning affect representation and retention?","authors":"Ana Zappa, Deirdre Bolger, Jean-Marie Pergandi, Raphael Fargier, Daniel Mestre, Cheryl Frenck-Mestre","doi":"10.1162/nol_a_00132","DOIUrl":"https://doi.org/10.1162/nol_a_00132","url":null,"abstract":"\u0000 We investigated how naturalistic actions in a highly immersive, multimodal, interactive 3D virtual reality (VR) environment may enhance word encoding by recording EEG in a pre/post-test learning paradigm. While behavior data has shown that coupling word encoding with gestures congruent with word meaning enhances learning, the neural underpinnings of this effect have yet to be elucidated. We coupled EEG recording with VR to examine whether “embodied learning” improves learning and creates linguistic representations that produce greater motor resonance. Participants learned action verbs in an L2 in two different conditions: Specific action (observing and performing congruent actions on virtual objects) and Pointing (observing actions and pointing to virtual objects). Pre and post-training participants performed a Match-mismatch task as we measured EEG (variation in the N400 response as a function of match between observed actions and auditory verbs) and a Passive listening task while we measured motor activation (mu (8-13 Hz) and beta band (13-30Hz) desynchronization during auditory verb processing) during verb processing. Contrary to our expectations, post-training results revealed neither semantic nor motor effects in either group when considered independently of learning success. Behavioral results showed a great deal of variability in learning success. When considering performance, Low performance learners showed no semantic effect and High performance learners exhibited an N400 effect for Mismatch vs Match trails post-training, independent of the type of learning. Taken as a whole, our results suggest that embodied processes can play an important role in L2 learning.","PeriodicalId":34845,"journal":{"name":"Neurobiology of Language","volume":"52 12","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139381818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}