Neurobiology of LanguagePub Date : 2024-10-28eCollection Date: 2024-01-01DOI: 10.1162/nol_a_00156
Tengwen Fan, Will Decker, Julie Schneider
{"title":"The Domain-Specific Neural Basis of Auditory Statistical Learning in 5-7-Year-Old Children.","authors":"Tengwen Fan, Will Decker, Julie Schneider","doi":"10.1162/nol_a_00156","DOIUrl":"10.1162/nol_a_00156","url":null,"abstract":"<p><p>Statistical learning (SL) is the ability to rapidly track statistical regularities and learn patterns in the environment. Recent studies show that SL is constrained by domain-specific features, rather than being a uniform learning mechanism across domains and modalities. This domain-specificity has been reflected at the neural level, as SL occurs in regions primarily involved in processing of specific modalities or domains of input. However, our understanding of how SL is constrained by domain-specific features in the developing brain is severely lacking. The present study aims to identify the functional neural profiles of auditory SL of linguistic and nonlinguistic regularities among children. Thirty children between 5 and 7 years old completed an auditory fMRI SL task containing interwoven sequences of structured and random syllable/tone sequences. Using traditional group univariate analyses and a group-constrained subject-specific analysis, frontal and temporal cortices showed significant activation when processing structured versus random sequences across both linguistic and nonlinguistic domains. However, conjunction analyses failed to identify overlapping neural indices across domains. These findings are the first to compare brain regions supporting SL of linguistic and nonlinguistic regularities in the developing brain and indicate that auditory SL among developing children may be constrained by domain-specific features.</p>","PeriodicalId":34845,"journal":{"name":"Neurobiology of Language","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527419/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142558998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neurobiology of LanguagePub Date : 2024-09-11eCollection Date: 2024-01-01DOI: 10.1162/nol_a_00151
Angelique Volfart, Katie L McMahon, Greig I de Zubicaray
{"title":"A Comparison of Denoising Approaches for Spoken Word Production Related Artefacts in Continuous Multiband fMRI Data.","authors":"Angelique Volfart, Katie L McMahon, Greig I de Zubicaray","doi":"10.1162/nol_a_00151","DOIUrl":"https://doi.org/10.1162/nol_a_00151","url":null,"abstract":"<p><p>It is well-established from fMRI experiments employing gradient echo echo-planar imaging (EPI) sequences that overt speech production introduces signal artefacts compromising accurate detection of task-related responses. Both design and post-processing (denoising) techniques have been proposed and implemented over the years to mitigate the various noise sources. Recently, fMRI studies of speech production have begun to adopt multiband EPI sequences that offer better signal-to-noise ratio (SNR) and temporal resolution allowing adequate sampling of physiological noise sources (e.g., respiration, cardiovascular effects) and reduced scanner acoustic noise. However, these new sequences may also introduce additional noise sources. In this study, we demonstrate the impact of applying several noise-estimation and removal approaches to continuous multiband fMRI data acquired during a naming-to-definition task, including rigid body motion regression and outlier censoring, principal component analysis for removal of cerebrospinal fluid (CSF)/edge-related noise components, and global fMRI signal regression (using two different approaches) compared to a baseline of realignment and unwarping alone. Our results show the strongest and most spatially extensive sources of physiological noise are the global signal fluctuations arising from respiration and muscle action and CSF/edge-related noise components, with residual rigid body motion contributing relatively little variance. Interestingly, denoising approaches tended to reduce and enhance task-related BOLD signal increases and decreases, respectively. Global signal regression using a voxel-wise linear model of the global signal estimated from unmasked data resulted in dramatic improvements in temporal SNR. Overall, these findings show the benefits of combining continuous multiband EPI sequences and denoising approaches to investigate the neurobiology of speech production.</p>","PeriodicalId":34845,"journal":{"name":"Neurobiology of Language","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410355/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142297157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neurobiology of LanguagePub Date : 2024-09-11eCollection Date: 2024-01-01DOI: 10.1162/nol_a_00150
Upasana Nathaniel, Stav Eidelsztein, Kate Girsh Geskin, Brianna L Yamasaki, Bracha Nir, Vedran Dronjic, James R Booth, Tali Bitan
{"title":"Neural Mechanisms of Learning and Consolidation of Morphologically Derived Words in a Novel Language: Evidence From Hebrew Speakers.","authors":"Upasana Nathaniel, Stav Eidelsztein, Kate Girsh Geskin, Brianna L Yamasaki, Bracha Nir, Vedran Dronjic, James R Booth, Tali Bitan","doi":"10.1162/nol_a_00150","DOIUrl":"https://doi.org/10.1162/nol_a_00150","url":null,"abstract":"<p><p>We examined neural mechanisms associated with the learning of novel morphologically derived words in native Hebrew speakers within the Complementary Learning Systems (CLS) framework. Across four sessions, 28 participants were trained on an artificial language, which included two types of morphologically complex words: linear (root + suffix) with a salient structure, and non-linear (root interleaved with template), with a prominent derivational structure in participants' first language (L1). A third simple monomorphemic condition, which served as baseline, was also included. On the first and fourth sessions, training was followed by testing in an fMRI scanner. Our behavioural results showed decomposition of both types of complex words, with the linear structure more easily learned than the non-linear structure. Our fMRI results showed involvement of frontal areas, associated with decomposition, only for the non-linear condition, after just the first session. We also observed training-related increases in activation in temporal areas specifically for the non-linear condition, which was correlated with participants' L1 morphological awareness. These results demonstrate that morphological decomposition of derived words occurs in the very early stages of word learning, is influenced by L1 experience, and can facilitate word learning. However, in contrast to the CLS framework, we found no support for a shift from reliance on hippocampus to reliance on cortical areas in any of our conditions. Instead, our findings align more closely with recent theories showing a positive correlation between changes in hippocampus and cortical areas, suggesting that these representations co-exist and continue to interact with one another beyond initial learning.</p>","PeriodicalId":34845,"journal":{"name":"Neurobiology of Language","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11410356/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142297158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neurobiology of LanguagePub Date : 2024-08-15eCollection Date: 2024-01-01DOI: 10.1162/nol_a_00113
Snežana Todorović, Jean-Luc Anton, Julien Sein, Bruno Nazarian, Valérie Chanoine, Birgit Rauchbauer, Sonja A Kotz, Elin Runnqvist
{"title":"Cortico-Cerebellar Monitoring of Speech Sequence Production.","authors":"Snežana Todorović, Jean-Luc Anton, Julien Sein, Bruno Nazarian, Valérie Chanoine, Birgit Rauchbauer, Sonja A Kotz, Elin Runnqvist","doi":"10.1162/nol_a_00113","DOIUrl":"10.1162/nol_a_00113","url":null,"abstract":"<p><p>In a functional magnetic resonance imaging study, we examined speech error monitoring in a cortico-cerebellar network for two contrasts: (a) correct trials with high versus low articulatory error probability and (b) overtly committed errors versus correct trials. Engagement of the cognitive cerebellar region Crus I in both contrasts suggests that this region is involved in overarching performance monitoring. The activation of cerebellar motor regions (superior medial cerebellum, lobules VI and VIII) indicates the additional presence of a sensorimotor driven implementation of control. The combined pattern of pre-supplementary motor area (active across contrasts) and anterior cingulate cortex (only active in the contrast involving overt errors) activations suggests sensorimotor driven feedback monitoring in the medial frontal cortex, making use of proprioception and auditory feedback through overt errors. Differential temporal and parietal cortex activation across contrasts indicates involvement beyond sensorimotor driven feedback in line with speech production models that link these regions to auditory target processing and internal modeling-like mechanisms. These results highlight the presence of multiple, possibly hierarchically interdependent, mechanisms that support the optimizing of speech production.</p>","PeriodicalId":34845,"journal":{"name":"Neurobiology of Language","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338302/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42785588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neurobiology of LanguagePub Date : 2024-08-15eCollection Date: 2024-01-01DOI: 10.1162/nol_a_00120
Roger D Newman-Norlund, Makayla Gibson, Lisa Johnson, Alex Teghipco, Chris Rorden, Leonardo Bonilha, Julius Fridriksson
{"title":"Cerebellar Atrophy and Language Processing in Chronic Left-Hemisphere Stroke.","authors":"Roger D Newman-Norlund, Makayla Gibson, Lisa Johnson, Alex Teghipco, Chris Rorden, Leonardo Bonilha, Julius Fridriksson","doi":"10.1162/nol_a_00120","DOIUrl":"10.1162/nol_a_00120","url":null,"abstract":"<p><p>Chronic stroke results in significant downstream changes at connected cortical sites. However, less is known about the impact of cortical stroke on cerebellar structure. Here, we examined the relationship between chronic stroke, cerebellar volume, cerebellar symmetry, language impairment, and treatment trajectories in a large cohort (<i>N</i> = 249) of chronic left hemisphere (LH) stroke patients with aphasia, using a healthy aging cohort (<i>N</i> = 244) as control data. Cerebellar gray matter volume was significantly reduced in chronic LH stroke relative to healthy control brains. Within the chronic LH stroke group, we observed a robust relationship between cerebellar volume, lesion size, and days post-stroke. Notably, the extent of cerebellar atrophy in chronic LH patients, particularly in the contralesional (right) cerebellar gray matter, explained significant variability in post-stroke aphasia severity, as measured by the Western Aphasia Battery-Revised, above and beyond traditional considerations such as cortical lesion size, days post-stroke, and demographic measures (age, race, sex). In a subset of participants that took part in language treatment studies, greater cerebellar gray matter volume was associated with greater treatment gains. These data support the importance of considering both cerebellar volume and symmetry in models of post-stroke aphasia severity and recovery.</p>","PeriodicalId":34845,"journal":{"name":"Neurobiology of Language","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41772113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neurobiology of LanguagePub Date : 2024-08-15eCollection Date: 2024-01-01DOI: 10.1162/nol_a_00083
Maedbh King, Sienna Bruinsma, Richard B Ivry
{"title":"No Evidence for Semantic Prediction Deficits in Individuals With Cerebellar Degeneration.","authors":"Maedbh King, Sienna Bruinsma, Richard B Ivry","doi":"10.1162/nol_a_00083","DOIUrl":"10.1162/nol_a_00083","url":null,"abstract":"<p><p>Cerebellar involvement in language processing has received considerable attention in the neuroimaging and neuropsychology literatures. Building off the motor control literature, one account of this involvement centers on the idea of internal models. In the context of language, this hypothesis suggests that the cerebellum is essential for building semantic models that, in concert with the cerebral cortex, help anticipate or predict linguistic input. To date, supportive evidence has primarily come from neuroimaging studies showing that cerebellar activation increases in contexts in which semantic predictions are generated and violated. Taking a neuropsychological approach, we put the internal model hypothesis to the test, asking if individuals with cerebellar degeneration (<i>n</i> = 14) show reduced sensitivity to semantic prediction. Using a sentence verification task, we compare reaction time to sentences that vary in terms of cloze probability. We also evaluated a more constrained variant of the prediction hypothesis, asking if the cerebellum facilitates the generation of semantic predictions when the content of a sentence refers to a dynamic rather than static mental transformation. The results failed to support either hypothesis: Compared to matched control participants (<i>n</i> = 17), individuals with cerebellar degeneration showed a similar reduction in reaction time for sentences with high cloze probability and no selective impairment in predictions involving dynamic transformations. These results challenge current theorizing about the role of the cerebellum in language processing, pointing to a misalignment between neuroimaging and neuropsychology research on this topic.</p>","PeriodicalId":34845,"journal":{"name":"Neurobiology of Language","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338309/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48382140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neurobiology of LanguagePub Date : 2024-08-15eCollection Date: 2024-01-01DOI: 10.1162/nol_a_00098
Sivan Jossinger, Maya Yablonski, Ofer Amir, Michal Ben-Shachar
{"title":"The Contributions of the Cerebellar Peduncles and the Frontal Aslant Tract in Mediating Speech Fluency.","authors":"Sivan Jossinger, Maya Yablonski, Ofer Amir, Michal Ben-Shachar","doi":"10.1162/nol_a_00098","DOIUrl":"10.1162/nol_a_00098","url":null,"abstract":"<p><p>Fluent speech production is a complex task that spans multiple processes, from conceptual framing and lexical access, through phonological encoding, to articulatory control. For the most part, imaging studies portraying the neural correlates of speech fluency tend to examine clinical populations sustaining speech impairments and focus on either lexical access or articulatory control, but not both. Here, we evaluated the contribution of the cerebellar peduncles to speech fluency by measuring the different components of the process in a sample of 45 neurotypical adults. Participants underwent an unstructured interview to assess their natural speaking rate and articulation rate, and completed timed semantic and phonemic fluency tasks to assess their verbal fluency. Diffusion magnetic resonance imaging with probabilistic tractography was used to segment the bilateral cerebellar peduncles (CPs) and frontal aslant tract (FAT), previously associated with speech production in clinical populations. Our results demonstrate distinct patterns of white matter associations with different fluency components. Specifically, verbal fluency is associated with the right superior CP, whereas speaking rate is associated with the right middle CP and bilateral FAT. No association is found with articulation rate in these pathways, in contrast to previous findings in persons who stutter. Our findings support the contribution of the cerebellum to aspects of speech production that go beyond articulatory control, such as lexical access, pragmatic or syntactic generation. Further, we demonstrate that distinct cerebellar pathways dissociate different components of speech fluency in neurotypical speakers.</p>","PeriodicalId":34845,"journal":{"name":"Neurobiology of Language","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338307/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46402446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neurobiology of LanguagePub Date : 2024-08-15eCollection Date: 2024-01-01DOI: 10.1162/nol_a_00142
Salomi S Asaridou, Gabriel J Cler, Anna Wiedemann, Saloni Krishnan, Harriet J Smith, Hanna E Willis, Máiréad P Healy, Kate E Watkins
{"title":"Microstructural Properties of the Cerebellar Peduncles in Children With Developmental Language Disorder.","authors":"Salomi S Asaridou, Gabriel J Cler, Anna Wiedemann, Saloni Krishnan, Harriet J Smith, Hanna E Willis, Máiréad P Healy, Kate E Watkins","doi":"10.1162/nol_a_00142","DOIUrl":"10.1162/nol_a_00142","url":null,"abstract":"<p><p>Children with developmental language disorder (DLD) struggle to learn their native language for no apparent reason. While research on the neurobiological underpinnings of the disorder has focused on the role of corticostriatal systems, little is known about the role of the cerebellum in DLD. Corticocerebellar circuits might be involved in the disorder as they contribute to complex sensorimotor skill learning, including the acquisition of spoken language. Here, we used diffusion-weighted imaging data from 77 typically developing and 54 children with DLD and performed probabilistic tractography to identify the cerebellum's white matter tracts: the inferior, middle, and superior cerebellar peduncles. Children with DLD showed lower fractional anisotropy (FA) in the inferior cerebellar peduncles (ICP), fiber tracts that carry motor and sensory input via the inferior olive to the cerebellum. Lower FA in DLD was driven by lower axial diffusivity. Probing this further with more sophisticated modeling of diffusion data, we found higher orientation dispersion but no difference in neurite density in the ICP of children with DLD. Reduced FA is therefore unlikely to be reflecting microstructural differences in myelination, rather the organization of axons in these pathways is disrupted. ICP microstructure was not associated with language or motor coordination performance in our sample. We also found no differences in the middle and superior peduncles, the main pathways connecting the cerebellum with the cortex. To conclude, it is not corticocerebellar but atypical olivocerebellar white matter connections that characterize DLD and suggest the involvement of the olivocerebellar system in speech and language acquisition and development.</p>","PeriodicalId":34845,"journal":{"name":"Neurobiology of Language","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338306/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neurobiology of LanguagePub Date : 2024-08-15eCollection Date: 2024-01-01DOI: 10.1162/nol_a_00085
Katie R Jobson, Linda J Hoffman, Athanasia Metoki, Haroon Popal, Anthony S Dick, Jamie Reilly, Ingrid R Olson
{"title":"Language and the Cerebellum: Structural Connectivity to the Eloquent Brain.","authors":"Katie R Jobson, Linda J Hoffman, Athanasia Metoki, Haroon Popal, Anthony S Dick, Jamie Reilly, Ingrid R Olson","doi":"10.1162/nol_a_00085","DOIUrl":"10.1162/nol_a_00085","url":null,"abstract":"<p><p>Neurobiological models of receptive language have focused on the left-hemisphere perisylvian cortex with the assumption that the cerebellum supports peri-linguistic cognitive processes such as verbal working memory. The goal of this study was to identify language-sensitive regions of the cerebellum then map the structural connectivity profile of these regions. Functional imaging data and diffusion-weighted imaging data from the Human Connectome Project (HCP) were analyzed. We found that (a) working memory, motor activity, and language comprehension activated partially overlapping but mostly unique subregions of the cerebellum; (b) the linguistic portion of the cerebello-thalamo-cortical circuit was more extensive than the linguistic portion of the cortico-ponto-cerebellar tract; (c) there was a frontal-lobe bias in the connectivity from the cerebellum to the cerebrum; (d) there was some degree of specificity; and (e) for some cerebellar tracts, individual differences in picture identification ability covaried with fractional anisotropy metrics. These findings yield insights into the structural connectivity of the cerebellum as relates to the uniquely human process of language comprehension.</p>","PeriodicalId":34845,"journal":{"name":"Neurobiology of Language","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338303/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142037245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intra-hemispheric white matter asymmetries and inter-hemispheric connections underlying the lateralization of language production and spatial attention in left-handers","authors":"Miaomiao Zhu, Xiao Wang, Xier Zhao, Qing Cai","doi":"10.1162/nol_a_00153","DOIUrl":"https://doi.org/10.1162/nol_a_00153","url":null,"abstract":"\u0000 Leftward language production and rightward spatial attention are salient features of functional organization in most humans, but their anatomical basis remains unclear. Interhemispheric connections and intra-hemispheric white matter asymmetries have been proposed as important factors underlying functional lateralization. To investigate the role of white matter connectivity in functional lateralization, we first identified 96 left-handers using visual half-field naming tasks. They were then divided into atypical and typical functional dominance based on the lateralization of brain activation in a word generation task (for language production) and a landmark task (for spatial attention). Using a novel fixel-based framework, we obtained fiber-specific properties of white matter pathways. Results showed that 1) differences between two language dominance groups occurred in the asymmetry of the superior longitudinal fasciculus-III (SLF-III), whereas differences between two spatial attention dominance groups occurred in the rostrum and rostral body of the corpus callosum. However, the directions of functional lateralization were not associated with the directions of white matter asymmetries. 2) The degree of language lateralization was predicted by SLF-III asymmetry and the rostral body of the corpus callosum, whereas the degree of spatial attention lateralization was predicted by the anterior midbody of the corpus callosum. Notably, the degree of each functional lateralization was positively correlated with the anterior and middle callosal connections, supporting the excitatory model of the corpus callosum. The results suggest that language lateralization is shaped by a combined effect of intra- and inter-hemispheric connections, whereas spatial attention lateralization relies more on interhemispheric connections.","PeriodicalId":34845,"journal":{"name":"Neurobiology of Language","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141827037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}