Exploring the Relationship Between White Matter Tracts and Resting-State Functional Language Lateralization Index.

IF 3.6 Q1 LINGUISTICS
Neurobiology of Language Pub Date : 2025-06-18 eCollection Date: 2025-01-01 DOI:10.1162/nol_a_00167
Marie-Ève Desjardins, Karine Marcotte, Xanthy Lajoie, Christophe Bedetti, Bérengère Houzé, Abdelali Filali-Mouhim, Arnaud Boré, Maxime Descoteaux, François Rheault, Simona Maria Brambati
{"title":"Exploring the Relationship Between White Matter Tracts and Resting-State Functional Language Lateralization Index.","authors":"Marie-Ève Desjardins, Karine Marcotte, Xanthy Lajoie, Christophe Bedetti, Bérengère Houzé, Abdelali Filali-Mouhim, Arnaud Boré, Maxime Descoteaux, François Rheault, Simona Maria Brambati","doi":"10.1162/nol_a_00167","DOIUrl":null,"url":null,"abstract":"<p><p>Resting-state functional magnetic resonance imaging (rs-fMRI) enables the evaluation of the language network and is particularly useful for measuring language lateralization with minimal participant effort and methodological biases (e.g., no language task execution or selection). Tractography using diffusion MRI (dMRI) provides complementary information on language-associated white matter bundles. Some structural white matter measures of the left or right hemisphere have been related to the functional language lateralization index (LI) and allow a better understanding of this network. This study utilizes tractography to identify white matter structural predictors of LI from a single hemisphere, employing linear regression and random forest models. Rs-fMRI and dMRI data from 618 healthy subjects of the Human Connectome Project were used to link LI to micro- and macro-structural measures of the arcuate fasciculi, the inferior longitudinal fasciculi, the frontal aslant tracts and sections of the corpus callosum. Results suggest a possible relationship between micro- and macro-structural measures of white matter tracts, and functional language lateralization measured in resting-state. However, the identified predictors are not sufficiently representative to be considered proxies for functional language lateralization. In conclusion, both micro- and macro-structural white matter characteristics as well as both left and right hemispheres are important to consider, but are not sufficient on their own, when investigating the relationship between brain structures and functional language lateralization.</p>","PeriodicalId":34845,"journal":{"name":"Neurobiology of Language","volume":"6 ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12204735/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/nol_a_00167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"LINGUISTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) enables the evaluation of the language network and is particularly useful for measuring language lateralization with minimal participant effort and methodological biases (e.g., no language task execution or selection). Tractography using diffusion MRI (dMRI) provides complementary information on language-associated white matter bundles. Some structural white matter measures of the left or right hemisphere have been related to the functional language lateralization index (LI) and allow a better understanding of this network. This study utilizes tractography to identify white matter structural predictors of LI from a single hemisphere, employing linear regression and random forest models. Rs-fMRI and dMRI data from 618 healthy subjects of the Human Connectome Project were used to link LI to micro- and macro-structural measures of the arcuate fasciculi, the inferior longitudinal fasciculi, the frontal aslant tracts and sections of the corpus callosum. Results suggest a possible relationship between micro- and macro-structural measures of white matter tracts, and functional language lateralization measured in resting-state. However, the identified predictors are not sufficiently representative to be considered proxies for functional language lateralization. In conclusion, both micro- and macro-structural white matter characteristics as well as both left and right hemispheres are important to consider, but are not sufficient on their own, when investigating the relationship between brain structures and functional language lateralization.

脑白质束与静息状态功能性语言侧化指数的关系探讨。
静息状态功能磁共振成像(rs-fMRI)能够评估语言网络,尤其适用于以最小的参与者努力和方法偏差(例如,不执行或选择语言任务)来测量语言侧化。使用弥散性磁共振成像(dMRI)的神经束造影提供了与语言相关的白质束的补充信息。一些左半球或右半球的白质结构测量与功能性语言侧化指数(LI)有关,可以更好地理解这一网络。本研究利用神经束成像技术,采用线性回归和随机森林模型,从单个脑半球识别脑白质结构预测因子。来自618名健康受试者的Rs-fMRI和dMRI数据被用于将LI与弓状束、下纵束、额斜束和胼胝体部分的微观和宏观结构测量联系起来。结果表明,静息状态下白质束的微观和宏观结构测量与功能性语言侧化测量之间可能存在关系。然而,所确定的预测因子不足以代表功能性语言的横向化。总之,在研究大脑结构和功能性语言偏侧化之间的关系时,微观和宏观结构白质特征以及左右半球都是重要的考虑因素,但单独考虑是不够的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurobiology of Language
Neurobiology of Language Social Sciences-Linguistics and Language
CiteScore
5.90
自引率
6.20%
发文量
32
审稿时长
17 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信