{"title":"Hizikia fusiforme polysaccharides synergized with fecal microbiota transplantation to alleviate gut microbiota dysbiosis and intestinal inflammation.","authors":"Zhengqi Liu, Menghui Wang, Jinjin Li, Yuxuan Liang, Kaiyu Jiang, Yuanyuan Hu, Wei Gong, Xiaoming Guo, Qingbin Guo, Beiwei Zhu","doi":"10.1016/j.ijbiomac.2024.137851","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137851","url":null,"abstract":"<p><p>Ulcerative colitis (UC) is closely associated with disruptions in gut microbiota. Restoring balance to gut microbiota and reducing intestinal inflammation has become a promising therapeutic approach for UC. However, challenges remain, including limited efficacy in some treatments. This study explores the synergistic effects and underlying mechanisms of Hizikia fusiforme polysaccharides (HFP) combined with fecal microbiota transplantation (FMT) to improve UC symptoms. Seven-week-old C57/BL6J mice were induced with UC using dextran sodium sulfate (DSS). Supplementation with either FMT alone or in combination with HFP effectively alleviated UC symptoms, reduced colonic inflammation, and corrected gut microbiota imbalance. Notably, HFP combined with FMT yielded showed better effects in ameliorating DSS-induced UC in mice than did FMT alone. Enrichment of probiotics, such as Bifidobacterium, and upregulation of beneficial metabolites, such as betaine, were identified as potential mechanisms for the enhanced effects of HFP combined with FMT against DSS-induced UC. These findings suggest that the combination of Hizikia fusiforme polysaccharides with FMT has potential applications in rectifying dysbiosis and ameliorating inflammatory bowel diseases.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137851"},"PeriodicalIF":7.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Formation of whey protein, pectin, and chlorogenic acid ternary complexes and their application in emulsions.","authors":"Yuanyuan Zhang, Yingcong Lu, Yaxuan Liu, Ru Zhao, Xin Huang, Cuina Wang, Tiehua Zhang","doi":"10.1016/j.ijbiomac.2024.137871","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137871","url":null,"abstract":"<p><p>Physicochemical properties, stability, and digestive behavior of lycopene-loaded emulsions prepared by ternary complexes fabricated with different mixing sequences based on whey protein isolate (WPI), high methoxyl pectin (HMP), and chlorogenic acid (CA) were investigated. Spectroscopic and molecular docking analyses confirmed the non-covalent interactions among the compounds within the ternary complexes, as well as the conformational changes in the protein induced by the mixing sequence. The interfacial tension (6.92-9.44 mN/m) influenced by the different mixing sequences of WPI, HMP and CA was HMP-CA-WPI > WPI-CA-HMP > WPI-HMP-CA, and the size of emulsions stabilized by HMP-CA-WPI was approximately 10 nm larger than that of the other two. Complexes with mixing sequence of HMP, CA and WPI outperformed in antioxidant properties (Ferric reducing power absorbance 0.43, ABTS∙ radical scavenging activity 66.04 %), lycopene retention rate (after UV irradiation 85.11 %, after thermal treatment 83.15 %), and storage stability of emulsions than those prepared by WPI-HMP-CA and WPI-CA-HMP. Emulsions stabilized by different ternary complexes showed similar free fatty acid release profiles (39.62 %-41.59 %) and lycopene bio-accessibility (28.87 %-29.94 %) during digestion. This study mat offer novel insights for the rational utilization in emulsions of ternary complexes based on proteins, polysaccharides, and phenolic acids.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137871"},"PeriodicalIF":7.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Danielle Cristine Mota Ferreira, Carolina Serra Rodrigues, Jane Sélia Dos Reis Coimbra, Eduardo Basílio de Oliveira
{"title":"Delivery and controlled release abilities of chitosan/carboxymethylcellulose micropolyelectrolyte complexes (PECs) toward niacinamide (vitamin B3).","authors":"Danielle Cristine Mota Ferreira, Carolina Serra Rodrigues, Jane Sélia Dos Reis Coimbra, Eduardo Basílio de Oliveira","doi":"10.1016/j.ijbiomac.2024.137848","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137848","url":null,"abstract":"<p><p>The administration of bioactive compounds presents challenges due to the numerous physiological barriers in the gastrointestinal tract. To deal with one of these challenges, chitosan/carboxymethylcellulose micropolyelectrolyte complexes (micro-PECs) were developed without the use of crosslinking agents to carry niacinamide, a model hydrophilic bioactive agent. A Box-Behnken design was used to study the effects of processing time (X<sub>1</sub>: 60, 120 or 180 min), pH (X<sub>2</sub>: 3, 4 or 5) and niacinamide concentration (X<sub>3</sub>: 0.02, 0.04 and 0.06, g·L<sup>-1</sup>) on the encapsulation efficiency (Y<sub>1</sub>) and loading capacity (Y<sub>2</sub>) of niacinamide by CMC/CHS micro-PECs. The encapsulation efficiency (Y<sub>1</sub>) varied from 0.86 % to 80.78 %, whereas the loading capacity (Y2) varied between 0.03 % and 3.89 %. The digestibility of CMC/CHS micro-PECs containing niacinamide was evaluated in vitro via a static gastrointestinal model. Empirical models (Zero Order, First Order, Higuchi and Korsemeyer-Peppas) were fitted to the niacinamide release kinetics data. The zero-order model exhibited the best fit across all points (gastric and enteric digestion), with low zero-order constants (K<sub>0</sub>) ~ 0.002-0.003, indicating a regular and subdued release rate in all cases. These results highlight the applicability of CMC/CHS micro-PECs as an efficient, novel oral delivery system, surpassing conventional approaches by offering a sustained release and high encapsulation efficiency, without the need for complex crosslinking agents for their obtention.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137848"},"PeriodicalIF":7.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Swapnil Zarkar, Ranjitha Gracy T Kalaivendan, Gunaseelan Eazhumalai, Uday S Annapure
{"title":"Atmospheric pin-to-plate cold plasma modification of amaranth starch & its application as a stabilizer in low-fat mayonnaise.","authors":"Swapnil Zarkar, Ranjitha Gracy T Kalaivendan, Gunaseelan Eazhumalai, Uday S Annapure","doi":"10.1016/j.ijbiomac.2024.137803","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137803","url":null,"abstract":"<p><p>This study investigates the changes in physicochemical, functional, rheological, and structural characteristics of the amaranth seed starch upon atmospheric cold plasma exposure with the generation/input voltages of 170, 200, and 230 V for 5-15 min and its potential as a fat replacer in a model emulsion system (mayonnaise). The surface modification by cold plasma is expected to enhance the native amaranth starch characteristics. Plasma treatment reduced the amylose content to a minimum of 9.00 % (230 V-15 min) resulting in a rise in relative crystallinity (74 %) and % syneresis (48.42 %). The hydratability remarkably elevated to a maximum rise of ~158 %, ~37 %, and ~41 % in solubility, absorption index, and swelling power respectively. Increased hydration, reduced the turbidity from 5.10 % (untreated) to a minimum of 3.42 % (230 V-15 min) of the pastes due to the cracked granular surface seen in electron micrographs. The rheological attributes improved up to 200 V-15 min with the peak viscosity of 5690 cP as the starch molecules tend to crosslink/aggregate which was confirmed by the increase in the COC stretching band area in FTIR spectra. On 30 % fat substitution with the plasma-treated amaranth starch (200 V-15 min), the mayonnaise viscosity increased significantly (p < 0.05) from ~7.60 Pa·s (control) to ~15.82 Pa·s (200 V-15 min) resulting in better emulsion stability (~82 %) and lightness. This proves the potential of cold plasma technology to modify under-utilized starches for sustainable food applications.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137803"},"PeriodicalIF":7.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giorgia Natalia Iaconisi, Amer Ahmed, Graziantonio Lauria, Nunzia Gallo, Giuseppe Fiermonte, Mary K Cowman, Loredana Capobianco, Vincenza Dolce
{"title":"Targeting mitochondria in Cancer therapy: Machine learning analysis of hyaluronic acid-based drug delivery systems.","authors":"Giorgia Natalia Iaconisi, Amer Ahmed, Graziantonio Lauria, Nunzia Gallo, Giuseppe Fiermonte, Mary K Cowman, Loredana Capobianco, Vincenza Dolce","doi":"10.1016/j.ijbiomac.2024.137840","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137840","url":null,"abstract":"<p><strong>Background: </strong>Mitochondrial alterations play a crucial role in the development and progression of cancer. Dysfunctional mitochondria contribute to the acquisition of key hallmarks of cancer, including sustained proliferative signaling, evasion of growth suppressors, and resistance to cell death. Consequently, targeting mitochondrial dysfunction has emerged as a promising therapeutic strategy. Hyaluronic acid (HA), a naturally occurring glycosaminoglycan, has garnered significant attention due to its multifaceted roles in cancer biology.</p><p><strong>Methods: </strong>We employed a Systematic Literature Review (SLR) approach to examine a collection of 90 scientific publications using a text mining technique leveraging the Latent Dirichlet Allocation (LDA) algorithm.</p><p><strong>Results: </strong>The result of this activity, performed through the MySLR digital platform, allowed us to identify a set of two distinct topics representing the research domain. Specifically, Topic 1 comprised 41 papers, while Topic 2 comprised 49 papers.</p><p><strong>Conclusions: </strong>The computational analysis highlighted that the integration of HA into drug delivery systems represents a promising approach to enhance the effectiveness and safety of cancer therapies. The discussed clinical trials provided compelling evidence of the potential of HA-based treatments in targeting cancer cells while minimizing adverse effects on healthy tissues.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137840"},"PeriodicalIF":7.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Guo, Man Xu, Xin Hu, Liang Cen, Dakun Pei, Dandan Zhang, Jie Xu, Pengfei Shi, Liqun Yang, Hongjuan Cui
{"title":"Extraction, purification, and mechanism of immunomodulatory peptides obtained from silkworm pupa protein hydrolysate.","authors":"Yan Guo, Man Xu, Xin Hu, Liang Cen, Dakun Pei, Dandan Zhang, Jie Xu, Pengfei Shi, Liqun Yang, Hongjuan Cui","doi":"10.1016/j.ijbiomac.2024.137863","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137863","url":null,"abstract":"<p><p>Silkworm pupa, a by-product of silk reeling, is rich in protein; however, it has traditionally been used as animal feed. This study isolated and purified peptides from the enzymatic hydrolysates of silkworm pupa protein, thus effectively enhancing its utilization. The immune activity of these peptides was evaluated in macrophages, and 609 peptides were identified using LC-MS/MS. These active peptides were screened based on their toxicity, allergenic, and biological activity, and their interactions with TLR2 and TLR4/MD-2 were predicted via molecular docking. Results indicated that APFAPAPL, YLPPFNSF, and FIPNEAFAGRPF could strongly bind to TLR2 and TLR4/MD-2 through hydrogen bonding and hydrophobic interactions. These peptides were synthesized using solid-phase synthesis, and their immune activity was verified by proliferation, NO, ROS and TNF-α secretion assays. All three peptides promoted the proliferation, phagocytosis, and secretion of ROS and TNF-α by macrophages. Western blot analysis showed that the peptides activated RAW 264.7 cells via the NF-κB and MAPK signaling pathways, mediated by TLR2 and TLR4/MD-2 receptors. Therefore, this study provides a new understanding of the immunomodulatory activity of silkworm pupa proteins, implying their potential use as functional food ingredients.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137863"},"PeriodicalIF":7.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bowei Tang, Zihao Xiong, Tingting Tao, Ya Sun, Deng Ding, Xiaofang Li, Chunlei Wang, Juntao Yan, Ruan Chi, Linbing Sun
{"title":"Activation of peroxymonosulfate over recyclable Co<sub>3</sub>O<sub>4</sub>/rice straw lignin-based carbon fiber flexible membrane for the degradation of organic pollutants.","authors":"Bowei Tang, Zihao Xiong, Tingting Tao, Ya Sun, Deng Ding, Xiaofang Li, Chunlei Wang, Juntao Yan, Ruan Chi, Linbing Sun","doi":"10.1016/j.ijbiomac.2024.137844","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137844","url":null,"abstract":"<p><p>Heterogeneous composite catalysts have gained significant attention in recent years due to their cleanliness, high efficiency, and stable performance. However, the difficulty of recovery and high cost have always limited the development of heterogeneous composite catalysts. Herein, flexible lignin-based carbon fiber (LCF) membranes with easy recovery and low cost were prepared by electrospinning and carbonization using rice straw lignin waste and polyacrylonitrile (PAN). Following in-situ sedimentation and annealing treatment, Co<sub>3</sub>O<sub>4</sub> nanoparticles were successfully anchored on the surface of LCF to achieve Co<sub>3</sub>O<sub>4</sub>/LCF composite membrane, which was utilized for activating peroxymonosulfate (PMS) with an impressive 83 % degradation efficiency of tetracycline (TC) within 30 min, the mineralization rate of TC reached 67 % within 90 min, and displayed exceptional degradation capabilities even with interfering substances. Based on the quenching experiments, electron paramagnetic resonance (EPR), electrochemical tests and X-ray photoelectron spectroscopy (XPS), both radical and non-radical pathways were involved for TC degradation, and non-radical pathway was identified as the primary route. Active sites such as CO, graphite N, pyridinic N, and the Co<sup>2+</sup>/Co<sup>3+</sup> redox cycle played the crucial roles during the degradation process. Density functional theory (DFT) and high-performance liquid chromatography-mass spectrometry (HPLC-MS) analyses demonstrated the proposal of a plausible degradation pathway for TC.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137844"},"PeriodicalIF":7.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xu Liu, Yuan Zhao, Cong Gao, Xiaohuan Sun, Shixin Li, Jie Han
{"title":"Effect of supramolecular chirality on nano-protein/cell interaction: An experimental and computational investigation.","authors":"Xu Liu, Yuan Zhao, Cong Gao, Xiaohuan Sun, Shixin Li, Jie Han","doi":"10.1016/j.ijbiomac.2024.137613","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137613","url":null,"abstract":"<p><p>Understanding the unique role of supramolecular chirality in nano-protein/cell interactions, as opposed to molecular chirality, is crucial for elucidating the origin of life. However, this aspect has received inadequate attention. In this study, L/D-glutamic acid-based amphiphiles (L/D-GluC16), which possess molecular chirality, were synthesized. Additionally, through the manipulation of solvent effects, left/right-handed helical nanofibers (M/P-GluC16), endowed with supramolecular chirality, were assembled from L/D-GluC16. With the aid of molecular dynamics (MD) simulations, the interaction between M/P-GluC16, L/D-GluC16, and a model protein (bovine serum albumin, BSA) was investigated at the thermodynamic and spatial orientational levels. Combined with the experimental result of protein adsorption efficiency, a more favorable chirality-dependent binding of M/P-GluC16 to protein compared to L/D-GluC16 was confirmed. Furthermore, driven by the binding-induced conformational changes and subsequent functional disruptions of proteins, M/P-GluC16 exhibited a greater chirality-specific cancer cell inhibitory efficacy compared to L/D-GluC16, highlighting the more significant impact of supramolecular chirality on nano-protein/cell interactions than molecular chirality.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137613"},"PeriodicalIF":7.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rui Li, Jiaojiao Mou, Lei Zhao, Mengqiu Hu, Bin Wang, Yanying Sun, Jing Liu, Xiaohui Qi, Jie Yang
{"title":"Fucoidan from Stichopus chloronotus relieved DSS induced ulcerative colitis through inhibiting intestinal barrier disruption and oxidative stress.","authors":"Rui Li, Jiaojiao Mou, Lei Zhao, Mengqiu Hu, Bin Wang, Yanying Sun, Jing Liu, Xiaohui Qi, Jie Yang","doi":"10.1016/j.ijbiomac.2024.137811","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137811","url":null,"abstract":"<p><p>Intestinal barrier disruption and oxidative stress are the major pathological features during the ulcerative colitis (UC). The present research aimed to explore the amelioration property of fucoidan of Stichopus chloronotus (FucSc) against dextran sulfate sodium (DSS) resulted UC. The findings from our study suggest that treating with Fuc-Sc improved the integrity of the Caco-2 monolayer through raising its TEER value, reducing LDH release, promoting the tight junction proteins (TJs) in Caco-2 cells, and shielding the cells from decreases of these proteins caused by H<sub>2</sub>O<sub>2</sub>. Besides, Fuc-Sc activated Nrf2/HO-1 pathway to facilitate the antioxidant activities of Caco-2 cells under oxidative stress through elevating the SOD and GSH, and reducing LDH and MDA. Furthermore, oral administration of Fuc-Sc attenuated DSS resulted body weights decrease, DAI score increase, colon length decrease, and structural damage of colon tissue. Fuc-Sc also promoted the barrier function and suppressed oxidative injury via activation of Nrf2/HO-1 signal path. Collectively, this research provided the theoretical foundation for fucoidan as a promising functional food for colitis.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137811"},"PeriodicalIF":7.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Schlafen5, regulated by the AP-1 family transcription factor c-Fos, affects diabetic wound healing through modulating PI3K/Akt/NRF2 axis.","authors":"Yun-Peng Fan, Jun-Sheng Lou, Zhuo-Qun Wei, Cong-Hui Zhou, Hong-Hao Shen, Zi-Yao Wei, Xing-Jia Mao, Lue Hong, Jin Qian, Meng-Ran Jin, Jun-Song Wu","doi":"10.1016/j.ijbiomac.2024.137805","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137805","url":null,"abstract":"<p><p>Diabetic ulcers (DUs) present significant physical and psychological challenges to patients, while placing a significant economic burden on healthcare systems. Promoting the blood vessel regeneration is critical for ensuring the delivery of essential nutrients and oxygen to the injured area, thereby supporting the healing process. To gain insight into the complex molecular mechanisms that drive DUs healing, we performed a comprehensive analysis of single-cell transcriptomic data from healing and non-healing DU states. This analysis revealed a key role of Schlafen5 (SLFN5) signal in modulating key healing processes. SLFN5, a protein known to regulate cellular processes like migration, invasion, inflammation, and cell death, emerged as an important player. Yet, although it is prominent, the specific function of SLFN5 in diabetic skin wounds remained unclear. Our study discovered a marked elevation of SLFN5 levels in endothelial cells within DUs and its suppression notably mitigates the oxidative stress and endoplasmic reticulum stress (ERS)-mediated cell death pathways, including pyroptosis and apoptosis. This finding implies that excessive SLFN5 activity might obstruct wound closure by intensifying cellular stress reactions. Upon further investigation, we found that the antioxidant and cytoprotective effects were mediated through enhanced NRF2 activity, facilitated by the PI3K/Akt signaling pathway. Moreover, our investigation identified that c-Fos as a pivotal transcription factor governing SLFN5 transcription during the development of DUs, offering valuable insights into the regulation of SLFN5 expression. In diabetic mice model, SLFN5 knockdown accelerating wound healing, which was intervened by PI3K/Akt inhibitor. These results hold significant therapeutic potential, indicating that targeting SLFN5 may represent a novel and effective strategy for improving wound healing outcomes in patients with DUs.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137805"},"PeriodicalIF":7.7,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}